IDNLearn.com: Your trusted source for finding accurate and reliable answers. Get prompt and accurate answers to your questions from our experts who are always ready to help.

Complete combustion of a [tex]$0.350 \, g$[/tex] sample of a compound in a bomb calorimeter releases [tex]$14.0 \, kJ$[/tex] of heat. The bomb calorimeter has a mass of [tex][tex]$1.20 \, kg$[/tex][/tex] and a specific heat of [tex]$3.55 \, \frac{kJ}{kg \, ^{\circ}C}$[/tex].

If the initial temperature of the calorimeter is [tex]$22.5^{\circ} C$[/tex], what is its final temperature? Use [tex]q=m C_p \Delta T[/tex].

A. [tex][tex]$25.8^{\circ} C$[/tex][/tex]

B. [tex]$34.2^{\circ} C$[/tex]


Sagot :

To find the final temperature of the calorimeter after the combustion process, we'll use the formula:

[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]

where:
- [tex]\( q \)[/tex] is the heat released (in Joules),
- [tex]\( m \)[/tex] is the mass of the calorimeter (in kilograms),
- [tex]\( C_p \)[/tex] is the specific heat capacity of the calorimeter (in Joules per kilogram per degree Celsius),
- [tex]\( \Delta T \)[/tex] is the change in temperature (in degrees Celsius).

Given the data:
- Heat released, [tex]\( q = 14.0 \, \text{kJ} = 14,000 \, \text{J} \)[/tex] (converted from kilojoules to joules),
- Mass of the calorimeter, [tex]\( m = 1.20 \, \text{kg} \)[/tex],
- Specific heat capacity, [tex]\( C_p = 3.55 \, \text{J/g}^\circ\text{C} \)[/tex]. Since the mass is in kilograms, we'll convert [tex]\( C_p \)[/tex] to [tex]\( \text{J/kg}^\circ\text{C} \)[/tex] by multiplying by 1000, resulting in [tex]\( C_p = 3.55 \times 1000 = 3550 \, \text{J/kg}^\circ\text{C} \)[/tex],
- Initial temperature, [tex]\( \text{T}_\text{initial} = 22.5^\circ\text{C} \)[/tex].

First, we'll rearrange the formula to solve for [tex]\( \Delta T \)[/tex]:

[tex]\[ \Delta T = \frac{q}{m \cdot C_p} \][/tex]

Substitute the given values into the formula:

[tex]\[ \Delta T = \frac{14,000 \, \text{J}}{1.20 \, \text{kg} \cdot 3550 \, \text{J/kg}^\circ\text{C}} \][/tex]

[tex]\[ \Delta T = \frac{14,000 \, \text{J}}{4,260 \, \text{J}^\circ\text{C}} \approx 3286.385^\circ\text{C} \][/tex]

Now that we have the temperature change, we can find the final temperature by adding the change in temperature to the initial temperature:

[tex]\[ \text{T}_\text{final} = \text{T}_\text{initial} + \Delta T \][/tex]

[tex]\[ \text{T}_\text{final} = 22.5^\circ\text{C} + 3286.385^\circ\text{C} \][/tex]

[tex]\[ \text{T}_\text{final} \approx 3308.885^\circ\text{C} \][/tex]

So, the final temperature of the calorimeter is approximately [tex]\( 3308.885^\circ\text{C} \)[/tex].