Join IDNLearn.com and become part of a knowledge-sharing community that thrives on curiosity. Our experts provide timely, comprehensive responses to ensure you have the information you need.
Sagot :
To solve this problem using Newton's Law of Cooling, we will follow the formula [tex]\( f(t) = T_0 + C e^{-k t} \)[/tex].
Given:
- Environmental temperature, [tex]\( T_0 = 0^{\circ} F \)[/tex]
- Initial temperature of the coffee, [tex]\( T_{\text{initial}} = 140^{\circ} F \)[/tex]
- Temperature of the coffee after [tex]\( 15 \)[/tex] minutes, [tex]\( T_{\text{after 15}} = 41^{\circ} F \)[/tex]
- Time at [tex]\( t = 15 \)[/tex] minutes
- We need to find the temperature of the coffee after [tex]\( 20 \)[/tex] minutes
Let's solve step-by-step:
1. Determine the constant [tex]\( C \)[/tex]:
Using the initial temperature:
[tex]\[ T_{\text{initial}} = T_0 + C \][/tex]
[tex]\[ 140 = 0 + C \][/tex]
[tex]\[ C = 140 \][/tex]
2. Find the decay constant [tex]\( k \)[/tex]:
Using the temperature after 15 minutes:
[tex]\[ T_{\text{after 15}} = T_0 + C e^{-k \cdot 15} \][/tex]
[tex]\[ 41 = 0 + 140 e^{-15k} \][/tex]
[tex]\[ 41 = 140 e^{-15k} \][/tex]
[tex]\[ \frac{41}{140} = e^{-15k} \][/tex]
Taking the natural logarithm on both sides:
[tex]\[ \ln\left(\frac{41}{140}\right) = -15k \][/tex]
[tex]\[ k = -\frac{\ln\left(\frac{41}{140}\right)}{15} \][/tex]
After solving, we find:
[tex]\[ k \approx 0.08187 \][/tex]
3. Calculate the temperature after 20 minutes:
Using the formula:
[tex]\[ T_{\text{after 20}} = T_0 + C e^{-k \cdot 20} \][/tex]
[tex]\[ T_{\text{after 20}} = 0 + 140 e^{-0.08187 \cdot 20} \][/tex]
Simplifying:
[tex]\[ T_{\text{after 20}} \approx 27.227 \][/tex]
Rounding to the nearest integer, we get:
[tex]\[ T_{\text{after 20}} \approx 27^{\circ} F \][/tex]
Hence, the coffee’s temperature after 20 minutes is [tex]\( 27^{\circ} F \)[/tex].
Given:
- Environmental temperature, [tex]\( T_0 = 0^{\circ} F \)[/tex]
- Initial temperature of the coffee, [tex]\( T_{\text{initial}} = 140^{\circ} F \)[/tex]
- Temperature of the coffee after [tex]\( 15 \)[/tex] minutes, [tex]\( T_{\text{after 15}} = 41^{\circ} F \)[/tex]
- Time at [tex]\( t = 15 \)[/tex] minutes
- We need to find the temperature of the coffee after [tex]\( 20 \)[/tex] minutes
Let's solve step-by-step:
1. Determine the constant [tex]\( C \)[/tex]:
Using the initial temperature:
[tex]\[ T_{\text{initial}} = T_0 + C \][/tex]
[tex]\[ 140 = 0 + C \][/tex]
[tex]\[ C = 140 \][/tex]
2. Find the decay constant [tex]\( k \)[/tex]:
Using the temperature after 15 minutes:
[tex]\[ T_{\text{after 15}} = T_0 + C e^{-k \cdot 15} \][/tex]
[tex]\[ 41 = 0 + 140 e^{-15k} \][/tex]
[tex]\[ 41 = 140 e^{-15k} \][/tex]
[tex]\[ \frac{41}{140} = e^{-15k} \][/tex]
Taking the natural logarithm on both sides:
[tex]\[ \ln\left(\frac{41}{140}\right) = -15k \][/tex]
[tex]\[ k = -\frac{\ln\left(\frac{41}{140}\right)}{15} \][/tex]
After solving, we find:
[tex]\[ k \approx 0.08187 \][/tex]
3. Calculate the temperature after 20 minutes:
Using the formula:
[tex]\[ T_{\text{after 20}} = T_0 + C e^{-k \cdot 20} \][/tex]
[tex]\[ T_{\text{after 20}} = 0 + 140 e^{-0.08187 \cdot 20} \][/tex]
Simplifying:
[tex]\[ T_{\text{after 20}} \approx 27.227 \][/tex]
Rounding to the nearest integer, we get:
[tex]\[ T_{\text{after 20}} \approx 27^{\circ} F \][/tex]
Hence, the coffee’s temperature after 20 minutes is [tex]\( 27^{\circ} F \)[/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your search for answers ends at IDNLearn.com. Thank you for visiting, and we hope to assist you again soon.