IDNLearn.com is designed to help you find reliable answers to any question you have. Our platform provides prompt, accurate answers from experts ready to assist you with any question you may have.
Sagot :
Let's study each sequence [tex]\((u_n)\)[/tex] as defined in the problem, step-by-step.
### (a) Sequence Defined by [tex]\( u_1 = 1, u_n = \frac{u_n + 2}{u_n + 1} \)[/tex]
The sequence starts with [tex]\( u_1 = 1 \)[/tex].
- Base case: [tex]\( u_1 = 1 \)[/tex].
- Compute the next terms recursively using:
[tex]\[ u_{n+1} = \frac{u_n + 2}{u_n + 1} \][/tex]
For [tex]\( n = 5 \)[/tex]:
- [tex]\( u_2 = \frac{u_1 + 2}{u_1 + 1} = \frac{1 + 2}{1 + 1} = \frac{3}{2} = 1.5 \)[/tex]
- [tex]\( u_3 = \frac{u_2 + 2}{u_2 + 1} = \frac{1.5 + 2}{1.5 + 1} = \frac{3.5}{2.5} = 1.4 \)[/tex]
- [tex]\( u_4 = \frac{u_3 + 2}{u_3 + 1} = \frac{1.4 + 2}{1.4 + 1} \approx 1.3846 \)[/tex]
- [tex]\( u_5 = \frac{u_4 + 2}{u_4 + 1} \approx \frac{1.3846 + 2}{1.3846 + 1} = 1.4137931034482758 \)[/tex]
Therefore, after 5 terms, the fifth term is approximately:
[tex]\[ u_5 \approx 1.4138 \][/tex]
### (b) Sequence Defined by [tex]\( u_0 = a, u_{n+1} = u_n^3 \)[/tex]
Given [tex]\( a=2 \)[/tex], let's find the fifth term [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 2 \)[/tex]
- [tex]\( u_1 = u_0^3 = 2^3 = 8 \)[/tex]
- [tex]\( u_2 = u_1^3 = 8^3 = 512 \)[/tex]
- [tex]\( u_3 = u_2^3 = 512^3 = 134217728 \)[/tex]
- [tex]\( u_4 = u_3^3 = 134217728^3 = 2417851639229258349412352 \)[/tex]
- [tex]\( u_5 = u_4^3 = (2417851639229258349412352)^3 \)[/tex]
The value of [tex]\( u_5 \)[/tex] is a very large number, approximately:
[tex]\[ u_5 \approx 14134776518227074636666380005943348126619871175004951664972849610340958208 \][/tex]
### (c) Sequence Defined by [tex]\( u_0 > 0, u_{n+1} = \sqrt{u_n + \sqrt{u_{n-1} + \cdots + \sqrt{u_0}}} \)[/tex]
Given [tex]\( u_0 = 1 \)[/tex], let's calculate [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = \sqrt{u_0} = \sqrt{1} = 1 \)[/tex]
- [tex]\( u_2 = \sqrt{u_1 + \sqrt{u_0}} = \sqrt{1 + \sqrt{1}} = \sqrt{1 + 1} = \sqrt{2} \approx 1.4142 \)[/tex]
- [tex]\( u_3 = \sqrt{u_2 + \sqrt{u_1 + \sqrt{u_0}}} = \sqrt{1.4142 + \sqrt{1 + 1}} \approx \sqrt{1.4142 + 1.4142} = \sqrt{2.8284} \approx 1.6818 \)[/tex]
- Continue this nested square root process for further terms.
After iterating sufficiently for [tex]\( n = 5 \)[/tex], we obtain:
[tex]\[ u_5 \approx 1.6343 \][/tex]
### (d) Sequence Defined by [tex]\( u_0 = 1, u_{n+1} = e^{u_n} - 2 \)[/tex]
Starting with [tex]\( u_0 = 1 \)[/tex], let's find [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = e^{u_0} - 2 = e^1 - 2 = e - 2 \approx 0.7183 \)[/tex]
- [tex]\( u_2 = e^{u_1} - 2 \approx e^{0.7183} - 2 \approx 2.0511 - 2 = 0.0511 \)[/tex]
- [tex]\( u_3 = e^{u_2} - 2 \approx e^{0.0511} - 2 \approx 1.0525 - 2 = -0.9475 \)[/tex]
- Each term depends on the exponential of the previous term, which results in an increasingly negative sequence.
After iterating to [tex]\( n=5 \)[/tex]:
[tex]\[ u_5 \approx -1.8006 \][/tex]
### (e) Sequence Defined by [tex]\( u_0 > 0, u_{n+1} = \frac{u_n^2 + 3}{2(u_n + 1)} \)[/tex]
Given [tex]\( u_0 = 1 \)[/tex], let's compute [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = \frac{u_0^2 + 3}{2(u_0 + 1)} = \frac{1^2 + 3}{2(1 + 1)} = \frac{4}{4} = 1 \)[/tex]
- Each subsequent term, due to the structure of the recurrence relation, will similarly evaluate to:
[tex]\[ u_n = 1 \][/tex]
Thus:
[tex]\[ u_5 = 1 \][/tex]
In conclusion, the sequences are:
(a) [tex]\( u_5 \approx 1.4138 \)[/tex]
(b) [tex]\( u_5 \approx 14134776518227074636666380005943348126619871175004951664972849610340958208 \)[/tex]
(c) [tex]\( u_5 \approx 1.6343 \)[/tex]
(d) [tex]\( u_5 \approx -1.8006 \)[/tex]
(e) [tex]\( u_5 = 1 \)[/tex]
### (a) Sequence Defined by [tex]\( u_1 = 1, u_n = \frac{u_n + 2}{u_n + 1} \)[/tex]
The sequence starts with [tex]\( u_1 = 1 \)[/tex].
- Base case: [tex]\( u_1 = 1 \)[/tex].
- Compute the next terms recursively using:
[tex]\[ u_{n+1} = \frac{u_n + 2}{u_n + 1} \][/tex]
For [tex]\( n = 5 \)[/tex]:
- [tex]\( u_2 = \frac{u_1 + 2}{u_1 + 1} = \frac{1 + 2}{1 + 1} = \frac{3}{2} = 1.5 \)[/tex]
- [tex]\( u_3 = \frac{u_2 + 2}{u_2 + 1} = \frac{1.5 + 2}{1.5 + 1} = \frac{3.5}{2.5} = 1.4 \)[/tex]
- [tex]\( u_4 = \frac{u_3 + 2}{u_3 + 1} = \frac{1.4 + 2}{1.4 + 1} \approx 1.3846 \)[/tex]
- [tex]\( u_5 = \frac{u_4 + 2}{u_4 + 1} \approx \frac{1.3846 + 2}{1.3846 + 1} = 1.4137931034482758 \)[/tex]
Therefore, after 5 terms, the fifth term is approximately:
[tex]\[ u_5 \approx 1.4138 \][/tex]
### (b) Sequence Defined by [tex]\( u_0 = a, u_{n+1} = u_n^3 \)[/tex]
Given [tex]\( a=2 \)[/tex], let's find the fifth term [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 2 \)[/tex]
- [tex]\( u_1 = u_0^3 = 2^3 = 8 \)[/tex]
- [tex]\( u_2 = u_1^3 = 8^3 = 512 \)[/tex]
- [tex]\( u_3 = u_2^3 = 512^3 = 134217728 \)[/tex]
- [tex]\( u_4 = u_3^3 = 134217728^3 = 2417851639229258349412352 \)[/tex]
- [tex]\( u_5 = u_4^3 = (2417851639229258349412352)^3 \)[/tex]
The value of [tex]\( u_5 \)[/tex] is a very large number, approximately:
[tex]\[ u_5 \approx 14134776518227074636666380005943348126619871175004951664972849610340958208 \][/tex]
### (c) Sequence Defined by [tex]\( u_0 > 0, u_{n+1} = \sqrt{u_n + \sqrt{u_{n-1} + \cdots + \sqrt{u_0}}} \)[/tex]
Given [tex]\( u_0 = 1 \)[/tex], let's calculate [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = \sqrt{u_0} = \sqrt{1} = 1 \)[/tex]
- [tex]\( u_2 = \sqrt{u_1 + \sqrt{u_0}} = \sqrt{1 + \sqrt{1}} = \sqrt{1 + 1} = \sqrt{2} \approx 1.4142 \)[/tex]
- [tex]\( u_3 = \sqrt{u_2 + \sqrt{u_1 + \sqrt{u_0}}} = \sqrt{1.4142 + \sqrt{1 + 1}} \approx \sqrt{1.4142 + 1.4142} = \sqrt{2.8284} \approx 1.6818 \)[/tex]
- Continue this nested square root process for further terms.
After iterating sufficiently for [tex]\( n = 5 \)[/tex], we obtain:
[tex]\[ u_5 \approx 1.6343 \][/tex]
### (d) Sequence Defined by [tex]\( u_0 = 1, u_{n+1} = e^{u_n} - 2 \)[/tex]
Starting with [tex]\( u_0 = 1 \)[/tex], let's find [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = e^{u_0} - 2 = e^1 - 2 = e - 2 \approx 0.7183 \)[/tex]
- [tex]\( u_2 = e^{u_1} - 2 \approx e^{0.7183} - 2 \approx 2.0511 - 2 = 0.0511 \)[/tex]
- [tex]\( u_3 = e^{u_2} - 2 \approx e^{0.0511} - 2 \approx 1.0525 - 2 = -0.9475 \)[/tex]
- Each term depends on the exponential of the previous term, which results in an increasingly negative sequence.
After iterating to [tex]\( n=5 \)[/tex]:
[tex]\[ u_5 \approx -1.8006 \][/tex]
### (e) Sequence Defined by [tex]\( u_0 > 0, u_{n+1} = \frac{u_n^2 + 3}{2(u_n + 1)} \)[/tex]
Given [tex]\( u_0 = 1 \)[/tex], let's compute [tex]\( u_5 \)[/tex]:
- [tex]\( u_0 = 1 \)[/tex]
- [tex]\( u_1 = \frac{u_0^2 + 3}{2(u_0 + 1)} = \frac{1^2 + 3}{2(1 + 1)} = \frac{4}{4} = 1 \)[/tex]
- Each subsequent term, due to the structure of the recurrence relation, will similarly evaluate to:
[tex]\[ u_n = 1 \][/tex]
Thus:
[tex]\[ u_5 = 1 \][/tex]
In conclusion, the sequences are:
(a) [tex]\( u_5 \approx 1.4138 \)[/tex]
(b) [tex]\( u_5 \approx 14134776518227074636666380005943348126619871175004951664972849610340958208 \)[/tex]
(c) [tex]\( u_5 \approx 1.6343 \)[/tex]
(d) [tex]\( u_5 \approx -1.8006 \)[/tex]
(e) [tex]\( u_5 = 1 \)[/tex]
Your presence in our community is highly appreciated. Keep sharing your insights and solutions. Together, we can build a rich and valuable knowledge resource for everyone. Find reliable answers at IDNLearn.com. Thanks for stopping by, and come back for more trustworthy solutions.