IDNLearn.com: Where your questions meet expert advice and community insights. Our platform is designed to provide accurate and comprehensive answers to any questions you may have.

How many electrons in an atom can have the following designations?

[tex]$5d_{z^2}$[/tex] : [tex]$\square$[/tex] electron(s)

[tex]$1d$[/tex] : [tex]$\square$[/tex] electron(s)

[tex]$5d$[/tex] : [tex]$\square$[/tex] electron(s)

[tex]$7p$[/tex] : [tex]$\square$[/tex] electron(s)

[tex]$6d$[/tex] : [tex]$\square$[/tex] electron(s)

[tex]$n=3$[/tex] : [tex]$\square$[/tex] electron(s)


Sagot :

Certainly! Let's determine the number of electrons for the given designations one by one:

1. [tex]\( 5 d_{z^2} \)[/tex] :

This refers to a specific orbital in the [tex]\( d \)[/tex] subshell of the 5th energy level. Each orbital can hold 2 electrons. Therefore, [tex]\( 5 d_{z^2} \)[/tex] can have:
[tex]\[ 5 d_{z^2} : 2 \text{ electron(s)} \][/tex]

2. [tex]\( 1 d \)[/tex] :

The [tex]\( d \)[/tex] subshell does not exist in the 1st principal energy level ([tex]\( n=1 \)[/tex]). Therefore, [tex]\( 1 d \)[/tex] can have:
[tex]\[ 1 d : 0 \text{ electron(s)} \][/tex]

3. [tex]\( 5 d \)[/tex] :

The [tex]\( d \)[/tex] subshell in the 5th energy level can have 5 orbitals, and each orbital can hold 2 electrons. Therefore, [tex]\( 5 d \)[/tex] can have:
[tex]\[ 5 d : 5 \text{ orbitals} \times 2 \text{ electrons/orbital} = 10 \text{ electron(s)} \][/tex]

4. [tex]\( 7 p \)[/tex] :

The [tex]\( p \)[/tex] subshell does not exist in the 7th principal energy level ([tex]\( n=7 \)[/tex]). Therefore, [tex]\( 7 p \)[/tex] can have:
[tex]\[ 7 p : 0 \text{ electron(s)} \][/tex]

5. [tex]\( 6 d \)[/tex] :

The [tex]\( d \)[/tex] subshell in the 6th energy level can have 5 orbitals, and each orbital can hold 2 electrons. Therefore, [tex]\( 6 d \)[/tex] can have:
[tex]\[ 6 d : 5 \text{ orbitals} \times 2 \text{ electrons/orbital} = 10 \text{ electron(s)} \][/tex]

6. [tex]\( n=3 \)[/tex] :

The total number of electrons in the 3rd energy level ([tex]\( n=3 \)[/tex]) can be calculated by summing the electrons in the 3s, 3p, and 3d subshells:
[tex]\[ \begin{align*} 3s & : 1 \text{ orbital} \times 2 \text{ electrons/orbital} = 2 \text{ electrons} \\ 3p & : 3 \text{ orbitals} \times 2 \text{ electrons/orbital} = 6 \text{ electrons} \\ 3d & : 5 \text{ orbitals} \times 2 \text{ electrons/orbital} = 10 \text{ electrons} \\ \end{align*} \][/tex]
Therefore, the total number of electrons for [tex]\( n=3 \)[/tex] is:
[tex]\[ n=3 : 2 + 6 + 10 = 18 \text{ electron(s)} \][/tex]

In summary:
[tex]\[ \begin{align*} 5 d_{z^2} & : 2 \text{ electron(s)} \\ 1 d & : 0 \text{ electron(s)} \\ 5 d & : 10 \text{ electron(s)} \\ 7 p & : 0 \text{ electron(s)} \\ 6 d & : 10 \text{ electron(s)} \\ n=3 & : 18 \text{ electron(s)} \end{align*} \][/tex]