IDNLearn.com offers a unique blend of expert answers and community-driven insights. Join our community to receive timely and reliable responses to your questions from knowledgeable professionals.
Sagot :
To determine the best prediction for the wavelength of the key that is 8 above the A above middle C using an exponential regression model, we can follow these steps:
1. Collect the Data:
The data provided gives us the number of keys above the A above middle C and their corresponding wavelengths.
[tex]\[ \begin{align*} x &: \{ 0, 2, 3, 6, 10 \} \\ y &: \{ 78.41, 69.85, 65.93, 55.44, 44.01 \} \\ \end{align*} \][/tex]
2. Model Identification:
We are asked to use an exponential regression model. This means we assume the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] can be modeled with an equation of the form:
[tex]\[ y = a \cdot b^x \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants.
3. Transform to a Linear Model:
By taking the natural logarithm of both sides of the equation, we can linearize the model:
[tex]\[ \ln(y) = \ln(a \cdot b^x) \][/tex]
[tex]\[ \ln(y) = \ln(a) + x \cdot \ln(b) \][/tex]
Letting [tex]\( Y = \ln(y) \)[/tex], [tex]\( A = \ln(a) \)[/tex], and [tex]\( B = \ln(b) \)[/tex], the model becomes:
[tex]\[ Y = A + Bx \][/tex]
Thus, we perform a linear regression on [tex]\( x \)[/tex] vs. [tex]\( \ln(y) \)[/tex].
4. Find the Coefficients:
Using linear regression on the transformed data:
[tex]\[ x: \{ 0, 2, 3, 6, 10 \} \][/tex]
[tex]\[ Y: \{ 4.361951470242831, 4.246350085702971, 4.188593573125209, 4.015301354881648, 3.784416880823 \} \][/tex]
The linear regression yields coefficients that represent [tex]\( \ln(a) \)[/tex] and [tex]\( \ln(b) \)[/tex]:
[tex]\[ \ln(y) = -0.05775194578546567 \cdot x + 4.361880845254086 \][/tex]
Therefore:
[tex]\[ A = 4.361880845254086, \quad B = -0.05775194578546567 \][/tex]
Converting back:
[tex]\[ a = e^{A} \approx 78.40446249017809 \][/tex]
[tex]\[ b = e^{B} \approx 0.9438840528175181 \][/tex]
5. Prediction for 8 Keys Above:
Using the exponential model [tex]\( y = a \cdot b^x \)[/tex]:
[tex]\[ y(8) = 78.40446249017809 \cdot (0.9438840528175181)^8 \][/tex]
This calculation gives:
[tex]\[ y(8) \approx 49.39579400502101 \text{ cm} \][/tex]
6. Closest Given Option:
We compare this predicted value to the provided options: [tex]\( 49.31 \)[/tex], [tex]\( 49.44 \)[/tex], [tex]\( 49.73 \)[/tex], and [tex]\( 49.78 \)[/tex] cm. The closest value to [tex]\( 49.39579400502101 \)[/tex] cm is [tex]\( 49.44 \)[/tex] cm.
Therefore, the best prediction for the wavelength of the key that is 8 above the A above middle C is:
[tex]\[ \boxed{49.44 \text{ cm}} \][/tex]
1. Collect the Data:
The data provided gives us the number of keys above the A above middle C and their corresponding wavelengths.
[tex]\[ \begin{align*} x &: \{ 0, 2, 3, 6, 10 \} \\ y &: \{ 78.41, 69.85, 65.93, 55.44, 44.01 \} \\ \end{align*} \][/tex]
2. Model Identification:
We are asked to use an exponential regression model. This means we assume the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] can be modeled with an equation of the form:
[tex]\[ y = a \cdot b^x \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants.
3. Transform to a Linear Model:
By taking the natural logarithm of both sides of the equation, we can linearize the model:
[tex]\[ \ln(y) = \ln(a \cdot b^x) \][/tex]
[tex]\[ \ln(y) = \ln(a) + x \cdot \ln(b) \][/tex]
Letting [tex]\( Y = \ln(y) \)[/tex], [tex]\( A = \ln(a) \)[/tex], and [tex]\( B = \ln(b) \)[/tex], the model becomes:
[tex]\[ Y = A + Bx \][/tex]
Thus, we perform a linear regression on [tex]\( x \)[/tex] vs. [tex]\( \ln(y) \)[/tex].
4. Find the Coefficients:
Using linear regression on the transformed data:
[tex]\[ x: \{ 0, 2, 3, 6, 10 \} \][/tex]
[tex]\[ Y: \{ 4.361951470242831, 4.246350085702971, 4.188593573125209, 4.015301354881648, 3.784416880823 \} \][/tex]
The linear regression yields coefficients that represent [tex]\( \ln(a) \)[/tex] and [tex]\( \ln(b) \)[/tex]:
[tex]\[ \ln(y) = -0.05775194578546567 \cdot x + 4.361880845254086 \][/tex]
Therefore:
[tex]\[ A = 4.361880845254086, \quad B = -0.05775194578546567 \][/tex]
Converting back:
[tex]\[ a = e^{A} \approx 78.40446249017809 \][/tex]
[tex]\[ b = e^{B} \approx 0.9438840528175181 \][/tex]
5. Prediction for 8 Keys Above:
Using the exponential model [tex]\( y = a \cdot b^x \)[/tex]:
[tex]\[ y(8) = 78.40446249017809 \cdot (0.9438840528175181)^8 \][/tex]
This calculation gives:
[tex]\[ y(8) \approx 49.39579400502101 \text{ cm} \][/tex]
6. Closest Given Option:
We compare this predicted value to the provided options: [tex]\( 49.31 \)[/tex], [tex]\( 49.44 \)[/tex], [tex]\( 49.73 \)[/tex], and [tex]\( 49.78 \)[/tex] cm. The closest value to [tex]\( 49.39579400502101 \)[/tex] cm is [tex]\( 49.44 \)[/tex] cm.
Therefore, the best prediction for the wavelength of the key that is 8 above the A above middle C is:
[tex]\[ \boxed{49.44 \text{ cm}} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is committed to providing the best answers. Thank you for visiting, and see you next time for more solutions.