Find solutions to your problems with the help of IDNLearn.com's expert community. Find reliable solutions to your questions quickly and accurately with help from our dedicated community of experts.
Sagot :
To determine the intervals where the function [tex]\( f(x) = \frac{9 - x^2}{x^2 - 4} \)[/tex] is positive, we need to analyze the sign of the numerator and denominator, along with considering any critical points where the denominator might change sign.
### 1. Analyze the Function
The function [tex]\( f(x) = \frac{9 - x^2}{x^2 - 4} \)[/tex] can be rewritten as:
[tex]\[ f(x) = \frac{(3 - x)(3 + x)}{(x - 2)(x + 2)} \][/tex]
This factorization helps us identify the roots and potential sign changes of the function.
### 2. Critical Points and Asymptotes
The roots of the numerator are [tex]\( x = 3 \)[/tex] and [tex]\( x = -3 \)[/tex]. The roots of the denominator, which are also vertical asymptotes, are [tex]\( x = 2 \)[/tex] and [tex]\( x = -2 \)[/tex].
### 3. Intervals to Check
Given the critical points [tex]\(x = -3, -2, 2,\)[/tex] and [tex]\( 3\)[/tex], we need to check the following intervals:
- [tex]\( (-\infty, -3) \)[/tex]
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (-2, 2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
- [tex]\( (3, \infty) \)[/tex]
### 4. Sign Analysis on Each Interval
#### Interval [tex]\( (-\infty, -3) \)[/tex]
Choose a test point [tex]\( x = -4 \)[/tex]:
[tex]\[ f(-4) = \frac{9 - (-4)^2}{(-4)^2 - 4} = \frac{9 - 16}{16 - 4} = \frac{-7}{12} \][/tex]
[tex]\( f(-4) < 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is not positive on [tex]\((-∞, -3)\)[/tex].
#### Interval [tex]\( (-3, -2) \)[/tex]
Choose a test point [tex]\( x = -2.5 \)[/tex]:
[tex]\[ f(-2.5) = \frac{9 - (-2.5)^2}{(-2.5)^2 - 4} = \frac{9 - 6.25}{6.25 - 4} = \frac{2.75}{2.25} \][/tex]
[tex]\( f(-2.5) > 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is positive on [tex]\( (-3, -2) \)[/tex].
#### Interval [tex]\( (-2, 2) \)[/tex]
Notice that within this interval, [tex]\( x = 0 \)[/tex] is a convenient test point:
[tex]\[ f(0) = \frac{9 - 0^2}{0^2 - 4} = \frac{9}{-4} = -2.25 \][/tex]
[tex]\( f(0) < 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is not positive on [tex]\( (-2, 2) \)[/tex].
#### Interval [tex]\( (2, 3) \)[/tex]
Choose a test point [tex]\( x = 2.5 \)[/tex]:
[tex]\[ f(2.5) = \frac{9 - (2.5)^2}{(2.5)^2 - 4} = \frac{9 - 6.25}{6.25 - 4} = \frac{2.75}{2.25} \][/tex]
[tex]\( f(2.5) > 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is positive on [tex]\( (2, 3) \)[/tex].
#### Interval [tex]\( (3, \infty) \)[/tex]
Choose a test point [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = \frac{9 - 4^2}{4^2 - 4} = \frac{9 - 16}{16 - 4} = \frac{-7}{12} \][/tex]
[tex]\( f(4) < 0 \)[/tex]
So, [tex]\( f(x) is not positive on \( (3, \infty) \)[/tex].
### Conclusion
[tex]\( f(x) \)[/tex] is positive on the intervals:
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
Therefore, the intervals for which [tex]\( f(x) \)[/tex] is positive are:
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
### 1. Analyze the Function
The function [tex]\( f(x) = \frac{9 - x^2}{x^2 - 4} \)[/tex] can be rewritten as:
[tex]\[ f(x) = \frac{(3 - x)(3 + x)}{(x - 2)(x + 2)} \][/tex]
This factorization helps us identify the roots and potential sign changes of the function.
### 2. Critical Points and Asymptotes
The roots of the numerator are [tex]\( x = 3 \)[/tex] and [tex]\( x = -3 \)[/tex]. The roots of the denominator, which are also vertical asymptotes, are [tex]\( x = 2 \)[/tex] and [tex]\( x = -2 \)[/tex].
### 3. Intervals to Check
Given the critical points [tex]\(x = -3, -2, 2,\)[/tex] and [tex]\( 3\)[/tex], we need to check the following intervals:
- [tex]\( (-\infty, -3) \)[/tex]
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (-2, 2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
- [tex]\( (3, \infty) \)[/tex]
### 4. Sign Analysis on Each Interval
#### Interval [tex]\( (-\infty, -3) \)[/tex]
Choose a test point [tex]\( x = -4 \)[/tex]:
[tex]\[ f(-4) = \frac{9 - (-4)^2}{(-4)^2 - 4} = \frac{9 - 16}{16 - 4} = \frac{-7}{12} \][/tex]
[tex]\( f(-4) < 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is not positive on [tex]\((-∞, -3)\)[/tex].
#### Interval [tex]\( (-3, -2) \)[/tex]
Choose a test point [tex]\( x = -2.5 \)[/tex]:
[tex]\[ f(-2.5) = \frac{9 - (-2.5)^2}{(-2.5)^2 - 4} = \frac{9 - 6.25}{6.25 - 4} = \frac{2.75}{2.25} \][/tex]
[tex]\( f(-2.5) > 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is positive on [tex]\( (-3, -2) \)[/tex].
#### Interval [tex]\( (-2, 2) \)[/tex]
Notice that within this interval, [tex]\( x = 0 \)[/tex] is a convenient test point:
[tex]\[ f(0) = \frac{9 - 0^2}{0^2 - 4} = \frac{9}{-4} = -2.25 \][/tex]
[tex]\( f(0) < 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is not positive on [tex]\( (-2, 2) \)[/tex].
#### Interval [tex]\( (2, 3) \)[/tex]
Choose a test point [tex]\( x = 2.5 \)[/tex]:
[tex]\[ f(2.5) = \frac{9 - (2.5)^2}{(2.5)^2 - 4} = \frac{9 - 6.25}{6.25 - 4} = \frac{2.75}{2.25} \][/tex]
[tex]\( f(2.5) > 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is positive on [tex]\( (2, 3) \)[/tex].
#### Interval [tex]\( (3, \infty) \)[/tex]
Choose a test point [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = \frac{9 - 4^2}{4^2 - 4} = \frac{9 - 16}{16 - 4} = \frac{-7}{12} \][/tex]
[tex]\( f(4) < 0 \)[/tex]
So, [tex]\( f(x) is not positive on \( (3, \infty) \)[/tex].
### Conclusion
[tex]\( f(x) \)[/tex] is positive on the intervals:
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
Therefore, the intervals for which [tex]\( f(x) \)[/tex] is positive are:
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.