IDNLearn.com offers a user-friendly platform for finding and sharing answers. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.

What can you say about the [tex]\( y \)[/tex]-values of the two functions [tex]\( f(x) = 3x^2 - 3 \)[/tex] and [tex]\( g(x) = 2^x - 3 \)[/tex]?

A. [tex]\( f(x) \)[/tex] has the smallest possible [tex]\( y \)[/tex]-value.
B. [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] have equivalent minimum [tex]\( y \)[/tex]-values.
C. The minimum [tex]\( y \)[/tex]-value of [tex]\( g(x) \)[/tex] approaches -3.
D. [tex]\( g(x) \)[/tex] has the smallest possible [tex]\( y \)[/tex]-value.


Sagot :

To analyze the [tex]$y$[/tex]-values of the two functions [tex]\( f(x) = 3x^2 - 3 \)[/tex] and [tex]\( g(x) = 2^x - 3 \)[/tex], let's consider their behaviors and minimum points.

### Function [tex]\( f(x) = 3x^2 - 3 \)[/tex]

1. Form of the Function: This is a quadratic function in the standard form [tex]\( ax^2 + bx + c \)[/tex] with the leading coefficient [tex]\( a = 3 > 0 \)[/tex], indicating that it is a parabola opening upwards.
2. Finding Critical Points (Vertically opened parabola):
- The vertex of the parabola given by [tex]\( f(x) = 3x^2 - 3 \)[/tex] provides the minimum value of the function.
- For a quadratic [tex]\( ax^2 + bx + c \)[/tex], the vertex [tex]\( x \)[/tex] coordinate is given by [tex]\( x = -\frac{b}{2a} \)[/tex].
- Here, [tex]\( b = 0 \)[/tex], so [tex]\( x = 0 \)[/tex].

3. Minimum [tex]\( y \)[/tex]-value:
- Substituting [tex]\( x = 0 \)[/tex] into [tex]\( f(x) \)[/tex]:
[tex]\[ f(0) = 3(0)^2 - 3 = -3 \][/tex]
- So, the minimum [tex]\( y \)[/tex]-value of [tex]\( f(x) \)[/tex] is [tex]\(-3\)[/tex].

### Function [tex]\( g(x) = 2^x - 3 \)[/tex]

1. Form of the Function: This function is an exponential function shifted downward by 3 units.
2. Behavior as [tex]\( x \to -\infty \)[/tex]:
- As [tex]\( x \to -\infty \)[/tex]:
- [tex]\( 2^x \to 0 \)[/tex]. Therefore, [tex]\( g(x) \to 0 - 3 = -3 \)[/tex].
- The function [tex]\( g(x) \)[/tex] asymptotically approaches [tex]\(-3\)[/tex] but does not reach [tex]\(-3\)[/tex] for any finite value of [tex]\( x \)[/tex].
3. Since [tex]\( g(x) \)[/tex] can get arbitrarily close to [tex]\(-3\)[/tex] but never actually reaches [tex]\(-3\)[/tex], its minimum [tex]\( y \)[/tex]-value in practical terms is indefinitely close to [tex]\(-3\)[/tex].

### Conclusion

Based on the analyses above:

- The minimum [tex]\( y \)[/tex]-value of [tex]\( f(x) \)[/tex] is exactly [tex]\(-3\)[/tex].
- The function [tex]\( g(x) \)[/tex] approaches but never actually reaches a [tex]\( y \)[/tex]-value of [tex]\(-3\)[/tex].

Option B states that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] have equivalent minimum [tex]\( y \)[/tex]-values, as both can reach or approach [tex]\(-3\)[/tex] equivalently in the context of their mathematical definitions and behaviors:

Thus,
[tex]\[ \boxed{B. \, f(x) \text{ and } g(x) \text{ have equivalent minimum } y\text{-values.}} \][/tex]