IDNLearn.com provides a seamless experience for finding accurate answers. Ask any question and receive accurate, in-depth responses from our dedicated team of experts.
Sagot :
Sure! Let's take this step-by-step to solve the problem for each part:
### Part (a): Calculate the total force on the moving particle
Given:
- Charge of the particle, [tex]\( q = 3.68 \times 10^{-18} \, \text{C} \)[/tex]
- Velocity of the particle, [tex]\( \vec{v} = 4 \hat{i} + 4 \hat{j} - \hat{k} \, \text{m/s} \)[/tex]
- Magnetic field, [tex]\( \vec{B} = 4 \hat{i} + 3 \hat{j} + \hat{k} \, \text{T} \)[/tex]
- Electric field, [tex]\( \vec{E} = 3 \hat{i} - \hat{j} - 2 \hat{k} \, \text{V/m} \)[/tex]
To determine the total force on the charged particle, we need to calculate both the electric force ([tex]\(\vec{F}_e\)[/tex]) and the magnetic force ([tex]\(\vec{F}_b\)[/tex]).
The electric force is given by:
[tex]\[ \vec{F}_e = q \vec{E} \][/tex]
The magnetic force is given by:
[tex]\[ \vec{F}_b = q (\vec{v} \times \vec{B}) \][/tex]
The total force is:
[tex]\[ \vec{F} = \vec{F}_e + \vec{F}_b \][/tex]
Given results for the force components:
[tex]\[ F_x = 3.68 \times 10^{-17} \, \text{N} \][/tex]
[tex]\[ F_y = -3.3119999999999996 \times 10^{-17} \, \text{N} \][/tex]
[tex]\[ F_z = -2.208 \times 10^{-17} \, \text{N} \][/tex]
### Part (b): Angle with the [tex]\( +x \)[/tex]-axis
To find the angle the force vector makes with the positive [tex]\( x \)[/tex]-axis, we use the dot product formula between the force vector and the [tex]\( x \)[/tex]-axis unit vector:
[tex]\[ \theta = \cos^{-1} \left( \frac{\vec{F} \cdot \hat{i}}{|\vec{F}|} \right) \][/tex]
Where
[tex]\[ \vec{F} \cdot \hat{i} = F_x \][/tex]
[tex]\[ |\vec{F}| = \sqrt{F_x^2 + F_y^2 + F_z^2} \][/tex]
Given result for the angle:
[tex]\[ \theta \approx 47.24660675818882^\circ \][/tex]
### Part (c): Electric field for zero net force
For the total force on the particle to be zero, the electric force must exactly cancel out the magnetic force:
[tex]\[ \vec{F}_e = -\vec{F}_b \][/tex]
[tex]\[ q \vec{E}_{\text{req}} = -q (\vec{v} \times \vec{B}) \][/tex]
[tex]\[ \vec{E}_{\text{req}} = - (\vec{v} \times \vec{B}) / q \][/tex]
Given results for the required electric field components:
[tex]\[ E_x = -7.0 \, \text{V/m} \][/tex]
[tex]\[ E_y = 8.0 \, \text{V/m} \][/tex]
[tex]\[ E_z = 4.0 \, \text{V/m} \][/tex]
### Summary of Answers
(a) The components of the total force are:
[tex]\[ F_x = 3.68 \times 10^{-17} \, \text{N} \][/tex]
[tex]\[ F_y = -3.3119999999999996 \times 10^{-17} \, \text{N} \][/tex]
[tex]\[ F_z = -2.208 \times 10^{-17} \, \text{N} \][/tex]
(b) The angle the force vector makes with the positive [tex]\( x \)[/tex]-axis is approximately [tex]\( 47.25^\circ \)[/tex] counterclockwise from the [tex]\( +x \)[/tex]-axis.
(c) The components of the electric field that would make the total force on the particle zero are:
[tex]\[ E_x = -7.0 \, \text{V/m} \][/tex]
[tex]\[ E_y = 8.0 \, \text{V/m} \][/tex]
[tex]\[ E_z = 4.0 \, \text{V/m} \][/tex]
### Part (a): Calculate the total force on the moving particle
Given:
- Charge of the particle, [tex]\( q = 3.68 \times 10^{-18} \, \text{C} \)[/tex]
- Velocity of the particle, [tex]\( \vec{v} = 4 \hat{i} + 4 \hat{j} - \hat{k} \, \text{m/s} \)[/tex]
- Magnetic field, [tex]\( \vec{B} = 4 \hat{i} + 3 \hat{j} + \hat{k} \, \text{T} \)[/tex]
- Electric field, [tex]\( \vec{E} = 3 \hat{i} - \hat{j} - 2 \hat{k} \, \text{V/m} \)[/tex]
To determine the total force on the charged particle, we need to calculate both the electric force ([tex]\(\vec{F}_e\)[/tex]) and the magnetic force ([tex]\(\vec{F}_b\)[/tex]).
The electric force is given by:
[tex]\[ \vec{F}_e = q \vec{E} \][/tex]
The magnetic force is given by:
[tex]\[ \vec{F}_b = q (\vec{v} \times \vec{B}) \][/tex]
The total force is:
[tex]\[ \vec{F} = \vec{F}_e + \vec{F}_b \][/tex]
Given results for the force components:
[tex]\[ F_x = 3.68 \times 10^{-17} \, \text{N} \][/tex]
[tex]\[ F_y = -3.3119999999999996 \times 10^{-17} \, \text{N} \][/tex]
[tex]\[ F_z = -2.208 \times 10^{-17} \, \text{N} \][/tex]
### Part (b): Angle with the [tex]\( +x \)[/tex]-axis
To find the angle the force vector makes with the positive [tex]\( x \)[/tex]-axis, we use the dot product formula between the force vector and the [tex]\( x \)[/tex]-axis unit vector:
[tex]\[ \theta = \cos^{-1} \left( \frac{\vec{F} \cdot \hat{i}}{|\vec{F}|} \right) \][/tex]
Where
[tex]\[ \vec{F} \cdot \hat{i} = F_x \][/tex]
[tex]\[ |\vec{F}| = \sqrt{F_x^2 + F_y^2 + F_z^2} \][/tex]
Given result for the angle:
[tex]\[ \theta \approx 47.24660675818882^\circ \][/tex]
### Part (c): Electric field for zero net force
For the total force on the particle to be zero, the electric force must exactly cancel out the magnetic force:
[tex]\[ \vec{F}_e = -\vec{F}_b \][/tex]
[tex]\[ q \vec{E}_{\text{req}} = -q (\vec{v} \times \vec{B}) \][/tex]
[tex]\[ \vec{E}_{\text{req}} = - (\vec{v} \times \vec{B}) / q \][/tex]
Given results for the required electric field components:
[tex]\[ E_x = -7.0 \, \text{V/m} \][/tex]
[tex]\[ E_y = 8.0 \, \text{V/m} \][/tex]
[tex]\[ E_z = 4.0 \, \text{V/m} \][/tex]
### Summary of Answers
(a) The components of the total force are:
[tex]\[ F_x = 3.68 \times 10^{-17} \, \text{N} \][/tex]
[tex]\[ F_y = -3.3119999999999996 \times 10^{-17} \, \text{N} \][/tex]
[tex]\[ F_z = -2.208 \times 10^{-17} \, \text{N} \][/tex]
(b) The angle the force vector makes with the positive [tex]\( x \)[/tex]-axis is approximately [tex]\( 47.25^\circ \)[/tex] counterclockwise from the [tex]\( +x \)[/tex]-axis.
(c) The components of the electric field that would make the total force on the particle zero are:
[tex]\[ E_x = -7.0 \, \text{V/m} \][/tex]
[tex]\[ E_y = 8.0 \, \text{V/m} \][/tex]
[tex]\[ E_z = 4.0 \, \text{V/m} \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.