IDNLearn.com is your go-to resource for finding expert answers and community support. Join our interactive community and access reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
To determine the limit of the sequence [tex]\( b_n = n^{4/n} \)[/tex] as [tex]\( n \)[/tex] approaches infinity, we can use properties of exponential and logarithmic functions. Let’s proceed step-by-step:
### Step 1: Rewrite the expression using logarithms
Consider the sequence [tex]\( b_n = n^{4/n} \)[/tex]. To simplify the limit computation, take the natural logarithm of both sides:
[tex]\[ \ln(b_n) = \ln\left(n^{4/n}\right) \][/tex]
Using the property of logarithms that [tex]\( \ln(a^b) = b \ln(a) \)[/tex], we can rewrite this as:
[tex]\[ \ln(b_n) = \frac{4}{n} \ln(n) \][/tex]
Now, let's define a new sequence [tex]\( L_n \)[/tex]:
[tex]\[ L_n = \frac{4 \ln(n)}{n} \][/tex]
### Step 2: Determine the limit of [tex]\( \ln(b_n) \)[/tex]
We need to find the limit of [tex]\( L_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity:
[tex]\[ \lim_{n \to \infty} L_n = \lim_{n \to \infty} \frac{4 \ln(n)}{n} \][/tex]
### Step 3: Apply L'Hôpital's Rule
The limit [tex]\( \lim_{n \to \infty} \frac{\ln(n)}{n} \)[/tex] is of the form [tex]\( \frac{\infty}{\infty} \)[/tex]. To resolve this indeterminate form, apply L'Hôpital's Rule:
[tex]\[ \lim_{n \to \infty} \frac{\ln(n)}{n} = \lim_{n \to \infty} \frac{\frac{d}{dn}(\ln(n))}{\frac{d}{dn}(n)} = \lim_{n \to \infty} \frac{1/n}{1} = \lim_{n \to \infty} \frac{1}{n} = 0 \][/tex]
Since [tex]\( \lim_{n \to \infty} \frac{\ln(n)}{n} = 0 \)[/tex], we have:
[tex]\[ \lim_{n \to \infty} L_n = \lim_{n \to \infty} \frac{4 \ln(n)}{n} = 4 \cdot \lim_{n \to \infty} \frac{\ln(n)}{n} = 4 \cdot 0 = 0 \][/tex]
### Step 4: Convert back from the logarithmic limit to the original sequence
We found that [tex]\( \lim_{n \to \infty} \ln(b_n) = 0 \)[/tex]. Recall that if [tex]\( \ln(a_n) \to L \)[/tex], then [tex]\( a_n = e^L \)[/tex]. Hence,
[tex]\[ \lim_{n \to \infty} b_n = e^0 = 1 \][/tex]
### Conclusion
Therefore, the limit of the given sequence as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_{n \rightarrow \infty} b_n = 1 \][/tex]
### Step 1: Rewrite the expression using logarithms
Consider the sequence [tex]\( b_n = n^{4/n} \)[/tex]. To simplify the limit computation, take the natural logarithm of both sides:
[tex]\[ \ln(b_n) = \ln\left(n^{4/n}\right) \][/tex]
Using the property of logarithms that [tex]\( \ln(a^b) = b \ln(a) \)[/tex], we can rewrite this as:
[tex]\[ \ln(b_n) = \frac{4}{n} \ln(n) \][/tex]
Now, let's define a new sequence [tex]\( L_n \)[/tex]:
[tex]\[ L_n = \frac{4 \ln(n)}{n} \][/tex]
### Step 2: Determine the limit of [tex]\( \ln(b_n) \)[/tex]
We need to find the limit of [tex]\( L_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity:
[tex]\[ \lim_{n \to \infty} L_n = \lim_{n \to \infty} \frac{4 \ln(n)}{n} \][/tex]
### Step 3: Apply L'Hôpital's Rule
The limit [tex]\( \lim_{n \to \infty} \frac{\ln(n)}{n} \)[/tex] is of the form [tex]\( \frac{\infty}{\infty} \)[/tex]. To resolve this indeterminate form, apply L'Hôpital's Rule:
[tex]\[ \lim_{n \to \infty} \frac{\ln(n)}{n} = \lim_{n \to \infty} \frac{\frac{d}{dn}(\ln(n))}{\frac{d}{dn}(n)} = \lim_{n \to \infty} \frac{1/n}{1} = \lim_{n \to \infty} \frac{1}{n} = 0 \][/tex]
Since [tex]\( \lim_{n \to \infty} \frac{\ln(n)}{n} = 0 \)[/tex], we have:
[tex]\[ \lim_{n \to \infty} L_n = \lim_{n \to \infty} \frac{4 \ln(n)}{n} = 4 \cdot \lim_{n \to \infty} \frac{\ln(n)}{n} = 4 \cdot 0 = 0 \][/tex]
### Step 4: Convert back from the logarithmic limit to the original sequence
We found that [tex]\( \lim_{n \to \infty} \ln(b_n) = 0 \)[/tex]. Recall that if [tex]\( \ln(a_n) \to L \)[/tex], then [tex]\( a_n = e^L \)[/tex]. Hence,
[tex]\[ \lim_{n \to \infty} b_n = e^0 = 1 \][/tex]
### Conclusion
Therefore, the limit of the given sequence as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_{n \rightarrow \infty} b_n = 1 \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.