Discover new information and get your questions answered with IDNLearn.com. Get the information you need from our experts, who provide reliable and detailed answers to all your questions.
Sagot :
To solve the equation [tex]\(\tan^2(x) + 2\sqrt{3}\tan(x) + 3 = 0\)[/tex] for [tex]\(x\)[/tex] in the range [tex]\(\pi \leq x \leq 2\pi\)[/tex], we will follow these steps:
1. Solve the quadratic equation for [tex]\(\tan(x)\)[/tex]:
[tex]\[ t = \tan(x) \][/tex]
This simplifies the given equation to:
[tex]\[ t^2 + 2\sqrt{3}t + 3 = 0 \][/tex]
Here, we can solve for [tex]\(t\)[/tex] using the quadratic formula, [tex]\(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = 2\sqrt{3}\)[/tex], and [tex]\(c = 3\)[/tex].
Substituting these values into the quadratic formula:
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{(2\sqrt{3})^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{12 - 12}}{2} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{0}}{2} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3}}{2} \][/tex]
[tex]\[ t = -\sqrt{3} \][/tex]
So, the solution for [tex]\(\tan(x)\)[/tex] is:
[tex]\[ \tan(x) = -\sqrt{3} \][/tex]
2. Find the corresponding [tex]\(x\)[/tex] values in the range [tex]\(\pi \leq x \leq 2\pi\)[/tex]:
We need to find [tex]\(x\)[/tex] such that:
[tex]\[ \tan(x) = -\sqrt{3} \][/tex]
To find these values, we look for the arctangent (or inverse tangent) solutions and consider the periodicity of the tangent function. The basic solution for [tex]\(\tan(x) = -\sqrt{3}\)[/tex] within one period can be found using:
[tex]\[ x = \arctan(-\sqrt{3}) + k\pi \][/tex]
where [tex]\( k \)[/tex] is an integer. Specifically,
[tex]\[ \arctan(-\sqrt{3}) \approx -\frac{\pi}{3} \][/tex]
3. Adjust for the given range [tex]\(\pi \leq x \leq 2\pi\)[/tex]:
For the solutions to fall within [tex]\(\pi \leq x \leq 2\pi\)[/tex], we consider adding [tex]\( k\pi \)[/tex] to our arctan solution from above.
- For [tex]\(k = 1\)[/tex]:
[tex]\[ x = -\frac{\pi}{3} + \pi = \frac{2\pi}{3} \][/tex]
This value does not fall within the specified range.
- For [tex]\(k = 2\)[/tex]:
[tex]\[ x = -\frac{\pi}{3} + 2\pi = \frac{5\pi}{3} \][/tex]
This value does fall within the range [tex]\(\pi \leq x \leq 2\pi\)[/tex].
Thus, the suitable [tex]\(x\)[/tex] value falling in the specified range is:
[tex]\[ x = \frac{5\pi}{3} \approx 5.236 \][/tex]
So, the complete solution indicates that the value of [tex]\(x\)[/tex] in the interval [tex]\(\pi \leq x \leq 2\pi\)[/tex] that satisfies the equation [tex]\(\tan^2(x) + 2\sqrt{3}\tan(x) + 3 = 0\)[/tex] is [tex]\( x = \frac{5\pi}{3} \approx 5.236 \)[/tex].
1. Solve the quadratic equation for [tex]\(\tan(x)\)[/tex]:
[tex]\[ t = \tan(x) \][/tex]
This simplifies the given equation to:
[tex]\[ t^2 + 2\sqrt{3}t + 3 = 0 \][/tex]
Here, we can solve for [tex]\(t\)[/tex] using the quadratic formula, [tex]\(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = 2\sqrt{3}\)[/tex], and [tex]\(c = 3\)[/tex].
Substituting these values into the quadratic formula:
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{(2\sqrt{3})^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{12 - 12}}{2} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{0}}{2} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3}}{2} \][/tex]
[tex]\[ t = -\sqrt{3} \][/tex]
So, the solution for [tex]\(\tan(x)\)[/tex] is:
[tex]\[ \tan(x) = -\sqrt{3} \][/tex]
2. Find the corresponding [tex]\(x\)[/tex] values in the range [tex]\(\pi \leq x \leq 2\pi\)[/tex]:
We need to find [tex]\(x\)[/tex] such that:
[tex]\[ \tan(x) = -\sqrt{3} \][/tex]
To find these values, we look for the arctangent (or inverse tangent) solutions and consider the periodicity of the tangent function. The basic solution for [tex]\(\tan(x) = -\sqrt{3}\)[/tex] within one period can be found using:
[tex]\[ x = \arctan(-\sqrt{3}) + k\pi \][/tex]
where [tex]\( k \)[/tex] is an integer. Specifically,
[tex]\[ \arctan(-\sqrt{3}) \approx -\frac{\pi}{3} \][/tex]
3. Adjust for the given range [tex]\(\pi \leq x \leq 2\pi\)[/tex]:
For the solutions to fall within [tex]\(\pi \leq x \leq 2\pi\)[/tex], we consider adding [tex]\( k\pi \)[/tex] to our arctan solution from above.
- For [tex]\(k = 1\)[/tex]:
[tex]\[ x = -\frac{\pi}{3} + \pi = \frac{2\pi}{3} \][/tex]
This value does not fall within the specified range.
- For [tex]\(k = 2\)[/tex]:
[tex]\[ x = -\frac{\pi}{3} + 2\pi = \frac{5\pi}{3} \][/tex]
This value does fall within the range [tex]\(\pi \leq x \leq 2\pi\)[/tex].
Thus, the suitable [tex]\(x\)[/tex] value falling in the specified range is:
[tex]\[ x = \frac{5\pi}{3} \approx 5.236 \][/tex]
So, the complete solution indicates that the value of [tex]\(x\)[/tex] in the interval [tex]\(\pi \leq x \leq 2\pi\)[/tex] that satisfies the equation [tex]\(\tan^2(x) + 2\sqrt{3}\tan(x) + 3 = 0\)[/tex] is [tex]\( x = \frac{5\pi}{3} \approx 5.236 \)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions deserve reliable answers. Thanks for visiting IDNLearn.com, and see you again soon for more helpful information.