IDNLearn.com is your go-to resource for finding answers to any question you have. Join our knowledgeable community to find the answers you need for any topic or issue.
Sagot :
To solve the equation [tex]\(\tan^2(x) + 2\sqrt{3}\tan(x) + 3 = 0\)[/tex] for [tex]\(x\)[/tex] in the range [tex]\(\pi \leq x \leq 2\pi\)[/tex], we will follow these steps:
1. Solve the quadratic equation for [tex]\(\tan(x)\)[/tex]:
[tex]\[ t = \tan(x) \][/tex]
This simplifies the given equation to:
[tex]\[ t^2 + 2\sqrt{3}t + 3 = 0 \][/tex]
Here, we can solve for [tex]\(t\)[/tex] using the quadratic formula, [tex]\(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = 2\sqrt{3}\)[/tex], and [tex]\(c = 3\)[/tex].
Substituting these values into the quadratic formula:
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{(2\sqrt{3})^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{12 - 12}}{2} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{0}}{2} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3}}{2} \][/tex]
[tex]\[ t = -\sqrt{3} \][/tex]
So, the solution for [tex]\(\tan(x)\)[/tex] is:
[tex]\[ \tan(x) = -\sqrt{3} \][/tex]
2. Find the corresponding [tex]\(x\)[/tex] values in the range [tex]\(\pi \leq x \leq 2\pi\)[/tex]:
We need to find [tex]\(x\)[/tex] such that:
[tex]\[ \tan(x) = -\sqrt{3} \][/tex]
To find these values, we look for the arctangent (or inverse tangent) solutions and consider the periodicity of the tangent function. The basic solution for [tex]\(\tan(x) = -\sqrt{3}\)[/tex] within one period can be found using:
[tex]\[ x = \arctan(-\sqrt{3}) + k\pi \][/tex]
where [tex]\( k \)[/tex] is an integer. Specifically,
[tex]\[ \arctan(-\sqrt{3}) \approx -\frac{\pi}{3} \][/tex]
3. Adjust for the given range [tex]\(\pi \leq x \leq 2\pi\)[/tex]:
For the solutions to fall within [tex]\(\pi \leq x \leq 2\pi\)[/tex], we consider adding [tex]\( k\pi \)[/tex] to our arctan solution from above.
- For [tex]\(k = 1\)[/tex]:
[tex]\[ x = -\frac{\pi}{3} + \pi = \frac{2\pi}{3} \][/tex]
This value does not fall within the specified range.
- For [tex]\(k = 2\)[/tex]:
[tex]\[ x = -\frac{\pi}{3} + 2\pi = \frac{5\pi}{3} \][/tex]
This value does fall within the range [tex]\(\pi \leq x \leq 2\pi\)[/tex].
Thus, the suitable [tex]\(x\)[/tex] value falling in the specified range is:
[tex]\[ x = \frac{5\pi}{3} \approx 5.236 \][/tex]
So, the complete solution indicates that the value of [tex]\(x\)[/tex] in the interval [tex]\(\pi \leq x \leq 2\pi\)[/tex] that satisfies the equation [tex]\(\tan^2(x) + 2\sqrt{3}\tan(x) + 3 = 0\)[/tex] is [tex]\( x = \frac{5\pi}{3} \approx 5.236 \)[/tex].
1. Solve the quadratic equation for [tex]\(\tan(x)\)[/tex]:
[tex]\[ t = \tan(x) \][/tex]
This simplifies the given equation to:
[tex]\[ t^2 + 2\sqrt{3}t + 3 = 0 \][/tex]
Here, we can solve for [tex]\(t\)[/tex] using the quadratic formula, [tex]\(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = 2\sqrt{3}\)[/tex], and [tex]\(c = 3\)[/tex].
Substituting these values into the quadratic formula:
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{(2\sqrt{3})^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{12 - 12}}{2} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{0}}{2} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3}}{2} \][/tex]
[tex]\[ t = -\sqrt{3} \][/tex]
So, the solution for [tex]\(\tan(x)\)[/tex] is:
[tex]\[ \tan(x) = -\sqrt{3} \][/tex]
2. Find the corresponding [tex]\(x\)[/tex] values in the range [tex]\(\pi \leq x \leq 2\pi\)[/tex]:
We need to find [tex]\(x\)[/tex] such that:
[tex]\[ \tan(x) = -\sqrt{3} \][/tex]
To find these values, we look for the arctangent (or inverse tangent) solutions and consider the periodicity of the tangent function. The basic solution for [tex]\(\tan(x) = -\sqrt{3}\)[/tex] within one period can be found using:
[tex]\[ x = \arctan(-\sqrt{3}) + k\pi \][/tex]
where [tex]\( k \)[/tex] is an integer. Specifically,
[tex]\[ \arctan(-\sqrt{3}) \approx -\frac{\pi}{3} \][/tex]
3. Adjust for the given range [tex]\(\pi \leq x \leq 2\pi\)[/tex]:
For the solutions to fall within [tex]\(\pi \leq x \leq 2\pi\)[/tex], we consider adding [tex]\( k\pi \)[/tex] to our arctan solution from above.
- For [tex]\(k = 1\)[/tex]:
[tex]\[ x = -\frac{\pi}{3} + \pi = \frac{2\pi}{3} \][/tex]
This value does not fall within the specified range.
- For [tex]\(k = 2\)[/tex]:
[tex]\[ x = -\frac{\pi}{3} + 2\pi = \frac{5\pi}{3} \][/tex]
This value does fall within the range [tex]\(\pi \leq x \leq 2\pi\)[/tex].
Thus, the suitable [tex]\(x\)[/tex] value falling in the specified range is:
[tex]\[ x = \frac{5\pi}{3} \approx 5.236 \][/tex]
So, the complete solution indicates that the value of [tex]\(x\)[/tex] in the interval [tex]\(\pi \leq x \leq 2\pi\)[/tex] that satisfies the equation [tex]\(\tan^2(x) + 2\sqrt{3}\tan(x) + 3 = 0\)[/tex] is [tex]\( x = \frac{5\pi}{3} \approx 5.236 \)[/tex].
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.