IDNLearn.com offers a seamless experience for finding and sharing knowledge. Join our Q&A platform to receive prompt and accurate responses from knowledgeable professionals in various fields.
Sagot :
To explore the features of the function [tex]\( g(x) \)[/tex] given by [tex]\( g(x) = f(x+4) + 8 \)[/tex] where [tex]\( f(x) = \log_2 x \)[/tex], we will break down the transformation step-by-step.
1. Base Function:
The initial function is [tex]\( f(x) = \log_2 x \)[/tex]. This is a logarithmic function with a base of 2.
2. Horizontal Translation:
The function [tex]\( f(x+4) \)[/tex] represents a horizontal translation of [tex]\( f(x) = \log_2 x \)[/tex] by 4 units to the left. This means for any given input [tex]\( x \)[/tex], we are now evaluating [tex]\( \log_2 (x+4) \)[/tex] instead of [tex]\( \log_2 x \)[/tex].
3. Vertical Translation:
Adding 8 to the result of [tex]\( f(x+4) \)[/tex] translates the entire graph 8 units up. Therefore, [tex]\( g(x) = f(x+4) + 8 \)[/tex] translates to [tex]\( g(x) = \log_2 (x+4) + 8 \)[/tex].
Let's look at the function features step-by-step with some specific values of [tex]\( x \)[/tex]:
### Calculating [tex]\( f(x) = \log_2 x \)[/tex] for specific values of [tex]\( x \)[/tex]:
- For [tex]\( x = 1 \)[/tex], [tex]\( f(1) = \log_2 1 = 0 \)[/tex]
- For [tex]\( x = 2 \)[/tex], [tex]\( f(2) = \log_2 2 = 1 \)[/tex]
- For [tex]\( x = 4 \)[/tex], [tex]\( f(4) = \log_2 4 = 2 \)[/tex]
- For [tex]\( x = 8 \)[/tex], [tex]\( f(8) = \log_2 8 = 3 \)[/tex]
So, we have [tex]\( f(x) = [0.0, 1.0, 2.0, 3.0] \)[/tex].
### Translating the function horizontally by 4 units to the left:
- For [tex]\( x = 1 \)[/tex], [tex]\( f(1+4) = \log_2 (1+4) = \log_2 5 \approx 2.321928094887362 \)[/tex]
- For [tex]\( x = 2 \)[/tex], [tex]\( f(2+4) = \log_2 (2+4) = \log_2 6 \approx 2.584962500721156 \)[/tex]
- For [tex]\( x = 4 \)[/tex], [tex]\( f(4+4) = \log_2 (4+4) = \log_2 8 = 3.0 \)[/tex]
- For [tex]\( x = 8 \)[/tex], [tex]\( f(8+4) = \log_2 (8+4) = \log_2 12 \approx 3.584962500721156 \)[/tex]
Therefore, the horizontally translated values are [tex]\([2.321928094887362, 2.584962500721156, 3.0, 3.584962500721156] \)[/tex].
### Adding 8 to each of these values:
- For [tex]\( x = 1 \)[/tex], [tex]\( g(1) = \log_2 (1+4) + 8 \approx 2.321928094887362 + 8 = 10.321928094887362 \)[/tex]
- For [tex]\( x = 2 \)[/tex], [tex]\( g(2) = \log_2 (2+4) + 8 \approx 2.584962500721156 + 8 = 10.584962500721156 \)[/tex]
- For [tex]\( x = 4 \)[/tex], [tex]\( g(4) = \log_2 (4+4) + 8 = 3.0 + 8 = 11.0 \)[/tex]
- For [tex]\( x = 8 \)[/tex], [tex]\( g(8) = \log_2 (8+4) + 8 \approx 3.584962500721156 + 8 = 11.584962500721156 \)[/tex]
Thus, the final values of [tex]\( g(x) \)[/tex] are [tex]\([10.321928094887362, 10.584962500721156, 11.0, 11.584962500721156] \)[/tex].
### Summary of the transformations and features:
- The function [tex]\( g(x) = \log_2 (x+4) + 8 \)[/tex] is obtained by translating [tex]\( \log_2 x \)[/tex] 4 units to the left and then 8 units up.
- This results in a set of transformations:
- Original function values [tex]\( f(x) \)[/tex] for [tex]\([1, 2, 4, 8] \)[/tex] are [tex]\([0.0, 1.0, 2.0, 3.0] \)[/tex].
- After translating horizontally by 4 units, the values become [tex]\([2.321928094887362, 2.584962500721156, 3.0, 3.584962500721156] \)[/tex].
- After adding 8, the final values of [tex]\( g(x) \)[/tex] are [tex]\([10.321928094887362, 10.584962500721156, 11.0, 11.584962500721156] \)[/tex].
The features of the new function [tex]\( g(x) \)[/tex] include a shifted graph of [tex]\( \log_2 x \)[/tex] both horizontally and vertically.
1. Base Function:
The initial function is [tex]\( f(x) = \log_2 x \)[/tex]. This is a logarithmic function with a base of 2.
2. Horizontal Translation:
The function [tex]\( f(x+4) \)[/tex] represents a horizontal translation of [tex]\( f(x) = \log_2 x \)[/tex] by 4 units to the left. This means for any given input [tex]\( x \)[/tex], we are now evaluating [tex]\( \log_2 (x+4) \)[/tex] instead of [tex]\( \log_2 x \)[/tex].
3. Vertical Translation:
Adding 8 to the result of [tex]\( f(x+4) \)[/tex] translates the entire graph 8 units up. Therefore, [tex]\( g(x) = f(x+4) + 8 \)[/tex] translates to [tex]\( g(x) = \log_2 (x+4) + 8 \)[/tex].
Let's look at the function features step-by-step with some specific values of [tex]\( x \)[/tex]:
### Calculating [tex]\( f(x) = \log_2 x \)[/tex] for specific values of [tex]\( x \)[/tex]:
- For [tex]\( x = 1 \)[/tex], [tex]\( f(1) = \log_2 1 = 0 \)[/tex]
- For [tex]\( x = 2 \)[/tex], [tex]\( f(2) = \log_2 2 = 1 \)[/tex]
- For [tex]\( x = 4 \)[/tex], [tex]\( f(4) = \log_2 4 = 2 \)[/tex]
- For [tex]\( x = 8 \)[/tex], [tex]\( f(8) = \log_2 8 = 3 \)[/tex]
So, we have [tex]\( f(x) = [0.0, 1.0, 2.0, 3.0] \)[/tex].
### Translating the function horizontally by 4 units to the left:
- For [tex]\( x = 1 \)[/tex], [tex]\( f(1+4) = \log_2 (1+4) = \log_2 5 \approx 2.321928094887362 \)[/tex]
- For [tex]\( x = 2 \)[/tex], [tex]\( f(2+4) = \log_2 (2+4) = \log_2 6 \approx 2.584962500721156 \)[/tex]
- For [tex]\( x = 4 \)[/tex], [tex]\( f(4+4) = \log_2 (4+4) = \log_2 8 = 3.0 \)[/tex]
- For [tex]\( x = 8 \)[/tex], [tex]\( f(8+4) = \log_2 (8+4) = \log_2 12 \approx 3.584962500721156 \)[/tex]
Therefore, the horizontally translated values are [tex]\([2.321928094887362, 2.584962500721156, 3.0, 3.584962500721156] \)[/tex].
### Adding 8 to each of these values:
- For [tex]\( x = 1 \)[/tex], [tex]\( g(1) = \log_2 (1+4) + 8 \approx 2.321928094887362 + 8 = 10.321928094887362 \)[/tex]
- For [tex]\( x = 2 \)[/tex], [tex]\( g(2) = \log_2 (2+4) + 8 \approx 2.584962500721156 + 8 = 10.584962500721156 \)[/tex]
- For [tex]\( x = 4 \)[/tex], [tex]\( g(4) = \log_2 (4+4) + 8 = 3.0 + 8 = 11.0 \)[/tex]
- For [tex]\( x = 8 \)[/tex], [tex]\( g(8) = \log_2 (8+4) + 8 \approx 3.584962500721156 + 8 = 11.584962500721156 \)[/tex]
Thus, the final values of [tex]\( g(x) \)[/tex] are [tex]\([10.321928094887362, 10.584962500721156, 11.0, 11.584962500721156] \)[/tex].
### Summary of the transformations and features:
- The function [tex]\( g(x) = \log_2 (x+4) + 8 \)[/tex] is obtained by translating [tex]\( \log_2 x \)[/tex] 4 units to the left and then 8 units up.
- This results in a set of transformations:
- Original function values [tex]\( f(x) \)[/tex] for [tex]\([1, 2, 4, 8] \)[/tex] are [tex]\([0.0, 1.0, 2.0, 3.0] \)[/tex].
- After translating horizontally by 4 units, the values become [tex]\([2.321928094887362, 2.584962500721156, 3.0, 3.584962500721156] \)[/tex].
- After adding 8, the final values of [tex]\( g(x) \)[/tex] are [tex]\([10.321928094887362, 10.584962500721156, 11.0, 11.584962500721156] \)[/tex].
The features of the new function [tex]\( g(x) \)[/tex] include a shifted graph of [tex]\( \log_2 x \)[/tex] both horizontally and vertically.
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.