Join the conversation on IDNLearn.com and get the answers you seek from experts. Our experts provide timely and precise responses to help you understand and solve any issue you face.
Sagot :
To find the magnitude of the source charge, we use the relationship between the electric field [tex]\(E\)[/tex], the distance [tex]\(r\)[/tex], the Coulomb constant [tex]\(K\)[/tex], and the charge [tex]\(Q\)[/tex]. The formula for the electric field generated by a point charge is given by:
[tex]\[ E = \frac{K \cdot Q}{r^2} \][/tex]
We are given:
- [tex]\( E = 1236 \, \text{N/C} \)[/tex]
- [tex]\( r = 4 \, \text{m} \)[/tex]
- [tex]\( K = 8.39 \times 10^9 \, \text{N·m}^2/\text{C}^2 \)[/tex]
To find the charge [tex]\( Q \)[/tex], we can rearrange the formula:
[tex]\[ Q = \frac{E \cdot r^2}{K} \][/tex]
Substituting the given values into the equation:
[tex]\[ Q = \frac{1236 \, \text{N/C} \cdot (4 \, \text{m})^2}{8.39 \times 10^9 \, \text{N·m}^2/\text{C}^2} \][/tex]
[tex]\[ Q = \frac{1236 \, \text{N/C} \cdot 16 \, \text{m}^2}{8.39 \times 10^9 \, \text{N·m}^2/\text{C}^2} \][/tex]
[tex]\[ Q = \frac{19776 \, \text{N·m}^2/\text{C}}{8.39 \times 10^9 \, \text{N·m}^2/\text{C}^2} \][/tex]
[tex]\[ Q \approx 2.357091775923719 \times 10^{-6} \, \text{C} \][/tex]
To express this value in microcoulombs ([tex]\(\mu C\)[/tex]):
[tex]\[ Q \approx 2.357091775923719 \times 10^{-6} \, \text{C} \times 10^6 \, \frac{\mu C}{C} \][/tex]
[tex]\[ Q \approx 2.357091775923719 \, \mu C \][/tex]
When rounded, we have:
[tex]\[ Q \approx 2.2 \, \mu C \][/tex]
Therefore, the magnitude of the source charge is [tex]\(2.2 \, \mu C\)[/tex]. The correct answer is [tex]\(2.2 \, \mu C\)[/tex].
[tex]\[ E = \frac{K \cdot Q}{r^2} \][/tex]
We are given:
- [tex]\( E = 1236 \, \text{N/C} \)[/tex]
- [tex]\( r = 4 \, \text{m} \)[/tex]
- [tex]\( K = 8.39 \times 10^9 \, \text{N·m}^2/\text{C}^2 \)[/tex]
To find the charge [tex]\( Q \)[/tex], we can rearrange the formula:
[tex]\[ Q = \frac{E \cdot r^2}{K} \][/tex]
Substituting the given values into the equation:
[tex]\[ Q = \frac{1236 \, \text{N/C} \cdot (4 \, \text{m})^2}{8.39 \times 10^9 \, \text{N·m}^2/\text{C}^2} \][/tex]
[tex]\[ Q = \frac{1236 \, \text{N/C} \cdot 16 \, \text{m}^2}{8.39 \times 10^9 \, \text{N·m}^2/\text{C}^2} \][/tex]
[tex]\[ Q = \frac{19776 \, \text{N·m}^2/\text{C}}{8.39 \times 10^9 \, \text{N·m}^2/\text{C}^2} \][/tex]
[tex]\[ Q \approx 2.357091775923719 \times 10^{-6} \, \text{C} \][/tex]
To express this value in microcoulombs ([tex]\(\mu C\)[/tex]):
[tex]\[ Q \approx 2.357091775923719 \times 10^{-6} \, \text{C} \times 10^6 \, \frac{\mu C}{C} \][/tex]
[tex]\[ Q \approx 2.357091775923719 \, \mu C \][/tex]
When rounded, we have:
[tex]\[ Q \approx 2.2 \, \mu C \][/tex]
Therefore, the magnitude of the source charge is [tex]\(2.2 \, \mu C\)[/tex]. The correct answer is [tex]\(2.2 \, \mu C\)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is dedicated to providing accurate answers. Thank you for visiting, and see you next time for more solutions.