Find solutions to your problems with the help of IDNLearn.com's knowledgeable users. Explore thousands of verified answers from experts and find the solutions you need, no matter the topic.
Sagot :
To determine the gravitational force between two masses, we use Newton's law of universal gravitation, which is given by the formula:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \: \text{N} \cdot (\text{m}^2 / \text{kg}^2) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects, each 8 kg in this case,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses, which is 2 meters in this case.
Given:
- [tex]\( m_1 = 8 \: \text{kg} \)[/tex]
- [tex]\( m_2 = 8 \: \text{kg} \)[/tex]
- [tex]\( r = 2 \: \text{m} \)[/tex]
Substitute these values into the formula:
[tex]\[ F = 6.67 \times 10^{-11} \frac{8 \: \text{kg} \cdot 8 \: \text{kg}}{(2 \: \text{m})^2} \][/tex]
First, calculate the numerator:
[tex]\[ 8 \: \text{kg} \cdot 8 \: \text{kg} = 64 \: \text{kg}^2 \][/tex]
Next, calculate the denominator:
[tex]\[ (2 \: \text{m})^2 = 4 \: \text{m}^2 \][/tex]
Now, substitute these into the equation:
[tex]\[ F = 6.67 \times 10^{-11} \frac{64 \: \text{kg}^2}{4 \: \text{m}^2} \][/tex]
Simplify the fraction:
[tex]\[ \frac{64 \: \text{kg}^2}{4 \: \text{m}^2} = 16 \: \text{kg}^2 / \text{m}^2 \][/tex]
So the force now is:
[tex]\[ F = 6.67 \times 10^{-11} \times 16 \: \text{N} \][/tex]
Multiplying these values:
[tex]\[ F = 6.67 \times 16 \times 10^{-11} \][/tex]
[tex]\[ F = 106.72 \times 10^{-11} \][/tex]
[tex]\[ F = 1.0672 \times 10^{-9} \: \text{N} \][/tex]
Hence, the gravitational force between the two bowling balls is:
[tex]\[ \boxed{1.07 \times 10^{-9} \: \text{N}} \][/tex]
So, the correct answer is:
A. [tex]\( 1.07 \times 10^{-9} \: \text{N} \)[/tex]
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \: \text{N} \cdot (\text{m}^2 / \text{kg}^2) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects, each 8 kg in this case,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses, which is 2 meters in this case.
Given:
- [tex]\( m_1 = 8 \: \text{kg} \)[/tex]
- [tex]\( m_2 = 8 \: \text{kg} \)[/tex]
- [tex]\( r = 2 \: \text{m} \)[/tex]
Substitute these values into the formula:
[tex]\[ F = 6.67 \times 10^{-11} \frac{8 \: \text{kg} \cdot 8 \: \text{kg}}{(2 \: \text{m})^2} \][/tex]
First, calculate the numerator:
[tex]\[ 8 \: \text{kg} \cdot 8 \: \text{kg} = 64 \: \text{kg}^2 \][/tex]
Next, calculate the denominator:
[tex]\[ (2 \: \text{m})^2 = 4 \: \text{m}^2 \][/tex]
Now, substitute these into the equation:
[tex]\[ F = 6.67 \times 10^{-11} \frac{64 \: \text{kg}^2}{4 \: \text{m}^2} \][/tex]
Simplify the fraction:
[tex]\[ \frac{64 \: \text{kg}^2}{4 \: \text{m}^2} = 16 \: \text{kg}^2 / \text{m}^2 \][/tex]
So the force now is:
[tex]\[ F = 6.67 \times 10^{-11} \times 16 \: \text{N} \][/tex]
Multiplying these values:
[tex]\[ F = 6.67 \times 16 \times 10^{-11} \][/tex]
[tex]\[ F = 106.72 \times 10^{-11} \][/tex]
[tex]\[ F = 1.0672 \times 10^{-9} \: \text{N} \][/tex]
Hence, the gravitational force between the two bowling balls is:
[tex]\[ \boxed{1.07 \times 10^{-9} \: \text{N}} \][/tex]
So, the correct answer is:
A. [tex]\( 1.07 \times 10^{-9} \: \text{N} \)[/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.