IDNLearn.com is designed to help you find reliable answers to any question you have. Join our interactive community and get comprehensive, reliable answers to all your questions.
Sagot :
To determine the gravitational force between two masses, we use Newton's law of universal gravitation, which is given by the formula:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \: \text{N} \cdot (\text{m}^2 / \text{kg}^2) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects, each 8 kg in this case,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses, which is 2 meters in this case.
Given:
- [tex]\( m_1 = 8 \: \text{kg} \)[/tex]
- [tex]\( m_2 = 8 \: \text{kg} \)[/tex]
- [tex]\( r = 2 \: \text{m} \)[/tex]
Substitute these values into the formula:
[tex]\[ F = 6.67 \times 10^{-11} \frac{8 \: \text{kg} \cdot 8 \: \text{kg}}{(2 \: \text{m})^2} \][/tex]
First, calculate the numerator:
[tex]\[ 8 \: \text{kg} \cdot 8 \: \text{kg} = 64 \: \text{kg}^2 \][/tex]
Next, calculate the denominator:
[tex]\[ (2 \: \text{m})^2 = 4 \: \text{m}^2 \][/tex]
Now, substitute these into the equation:
[tex]\[ F = 6.67 \times 10^{-11} \frac{64 \: \text{kg}^2}{4 \: \text{m}^2} \][/tex]
Simplify the fraction:
[tex]\[ \frac{64 \: \text{kg}^2}{4 \: \text{m}^2} = 16 \: \text{kg}^2 / \text{m}^2 \][/tex]
So the force now is:
[tex]\[ F = 6.67 \times 10^{-11} \times 16 \: \text{N} \][/tex]
Multiplying these values:
[tex]\[ F = 6.67 \times 16 \times 10^{-11} \][/tex]
[tex]\[ F = 106.72 \times 10^{-11} \][/tex]
[tex]\[ F = 1.0672 \times 10^{-9} \: \text{N} \][/tex]
Hence, the gravitational force between the two bowling balls is:
[tex]\[ \boxed{1.07 \times 10^{-9} \: \text{N}} \][/tex]
So, the correct answer is:
A. [tex]\( 1.07 \times 10^{-9} \: \text{N} \)[/tex]
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \: \text{N} \cdot (\text{m}^2 / \text{kg}^2) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects, each 8 kg in this case,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses, which is 2 meters in this case.
Given:
- [tex]\( m_1 = 8 \: \text{kg} \)[/tex]
- [tex]\( m_2 = 8 \: \text{kg} \)[/tex]
- [tex]\( r = 2 \: \text{m} \)[/tex]
Substitute these values into the formula:
[tex]\[ F = 6.67 \times 10^{-11} \frac{8 \: \text{kg} \cdot 8 \: \text{kg}}{(2 \: \text{m})^2} \][/tex]
First, calculate the numerator:
[tex]\[ 8 \: \text{kg} \cdot 8 \: \text{kg} = 64 \: \text{kg}^2 \][/tex]
Next, calculate the denominator:
[tex]\[ (2 \: \text{m})^2 = 4 \: \text{m}^2 \][/tex]
Now, substitute these into the equation:
[tex]\[ F = 6.67 \times 10^{-11} \frac{64 \: \text{kg}^2}{4 \: \text{m}^2} \][/tex]
Simplify the fraction:
[tex]\[ \frac{64 \: \text{kg}^2}{4 \: \text{m}^2} = 16 \: \text{kg}^2 / \text{m}^2 \][/tex]
So the force now is:
[tex]\[ F = 6.67 \times 10^{-11} \times 16 \: \text{N} \][/tex]
Multiplying these values:
[tex]\[ F = 6.67 \times 16 \times 10^{-11} \][/tex]
[tex]\[ F = 106.72 \times 10^{-11} \][/tex]
[tex]\[ F = 1.0672 \times 10^{-9} \: \text{N} \][/tex]
Hence, the gravitational force between the two bowling balls is:
[tex]\[ \boxed{1.07 \times 10^{-9} \: \text{N}} \][/tex]
So, the correct answer is:
A. [tex]\( 1.07 \times 10^{-9} \: \text{N} \)[/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.