Get the most out of your questions with IDNLearn.com's extensive resources. Our community provides accurate and timely answers to help you understand and solve any issue.

3. Determine whether the series converges or diverges. If it converges, find the sum.

Hint: Write it as a geometric series

[tex]\[ 1 - \frac{1}{\sqrt{3}} + \frac{1}{3} - \frac{1}{3\sqrt{3}} + \frac{1}{9} - \frac{1}{9\sqrt{3}} + \cdots \][/tex]

---

4. Find the fractional expansion of the repeating decimal [tex]\(0.\overline{424242}\)[/tex] by rewriting it as a geometric series.

Hint: [tex]\(0.42 = \frac{42}{100}\)[/tex] and [tex]\(0.0042 = \frac{42}{100} \cdot 10^{-2.1}\)[/tex], so [tex]\(0.4242 = \frac{42}{100}(10^{-2.0} + 10^{-2.1})\)[/tex]


Sagot :

Sure, let's tackle each problem step-by-step.

### Problem 1: Convergence of the Series

Given the series:
[tex]\[ 1 - \frac{1}{\sqrt{3}} + \frac{1}{3} - \frac{1}{3\sqrt{3}} + \frac{1}{9} - \frac{1}{9\sqrt{3}} + \cdots \][/tex]

To determine whether this series converges or diverges, and if it converges, find the sum, we need to identify whether it represents a geometric series.

#### Step 1: Identify the Pattern
Observe the terms of the series and how they change. We can group the series in pairs of positive and negative terms as follows:

[tex]\[ \left(1 - \frac{1}{\sqrt{3}}\right) + \left(\frac{1}{3} - \frac{1}{3\sqrt{3}}\right) + \left(\frac{1}{9} - \frac{1}{9\sqrt{3}}\right) + \cdots \][/tex]

#### Step 2: Recognize the Series as Geometric
Each pair of terms can be expressed as:
[tex]\[ \left(\frac{1}{3^n} - \frac{1}{3^n \cdot \sqrt{3}}\right) \][/tex]

Factor out [tex]\( \frac{1}{3^n} \)[/tex] from each term:
[tex]\[ \left(\frac{1}{3^n} \times 1 - \frac{1}{3^n} \times \frac{1}{\sqrt{3}}\right) = \frac{1}{3^n} \left(1 - \frac{1}{\sqrt{3}}\right) \][/tex]

#### Step 3: Simplify the Series
Let:
[tex]\[ a = 1 - \frac{1}{\sqrt{3}} \][/tex]

Then our series becomes:
[tex]\[ a \left(1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots\right) \][/tex]

#### Step 4: Sum the Geometric Series
This is a geometric series with the first term [tex]\( a \)[/tex] and common ratio [tex]\( r = \frac{1}{3} \)[/tex]. The sum [tex]\( S \)[/tex] of an infinite geometric series [tex]\( a + ar + ar^2 + ar^3 + \cdots \)[/tex] can be found using the formula:
[tex]\[ S = \frac{a}{1 - r} \][/tex]

Here, [tex]\( a = 1 - \frac{1}{\sqrt{3}} \)[/tex] and [tex]\( r = \frac{1}{3} \)[/tex]. Plugging these in:
[tex]\[ S = \frac{1 - \frac{1}{\sqrt{3}}}{1 - \frac{1}{3}} = \frac{1 - \frac{1}{\sqrt{3}}}{\frac{2}{3}} = \frac{3}{2} \left(1 - \frac{1}{\sqrt{3}}\right) \][/tex]

Thus, the series converges and the sum is:
[tex]\[ \boxed{\frac{3}{2} \left(1 - \frac{1}{\sqrt{3}}\right)} \][/tex]

### Problem 2: Fractional Expansion of Repeating Decimal

Given the repeating decimal:
[tex]\[ 0.424242 \overline{42} \][/tex]

Let's convert this repeating decimal into a fraction.

#### Step 1: Express the Repeating Decimal as a Geometric Series
Notice that:
[tex]\[ 0.42424242\ldots = 0.42 + 0.0042 + 0.000042 + \cdots \][/tex]

We can write this as:
[tex]\[ 0.42 (1 + 0.01 + 0.0001 + \cdots) \][/tex]

Notice this forms a geometric series where each term is [tex]\( 0.01 \)[/tex] times the previous term.

#### Step 2: Write it as a Geometric Series
Let:
[tex]\[ a = 0.42 = \frac{42}{100} \][/tex]
[tex]\[ r = 0.01 = \frac{1}{100} \][/tex]

Thus:
[tex]\[ 0.424242\ldots = \frac{42}{100} \left(1 + \left(\frac{1}{100}\right) + \left(\frac{1}{100}\right)^2 + \cdots\right) \][/tex]

#### Step 3: Sum the Geometric Series
The sum [tex]\( S \)[/tex] of an infinite geometric series [tex]\( a + ar + ar^2 + ar^3 + \cdots \)[/tex] is:
[tex]\[ S = \frac{a}{1 - r} \][/tex]

Here, [tex]\( a = \frac{42}{100} \)[/tex] and [tex]\( r = \frac{1}{100} \)[/tex]:
[tex]\[ S = \frac{\frac{42}{100}}{1 - \frac{1}{100}} = \frac{\frac{42}{100}}{\frac{99}{100}} = \frac{42}{99} \][/tex]

#### Step 4: Simplify the Fraction
Simplify [tex]\( \frac{42}{99} \)[/tex] by dividing the numerator and the denominator by their greatest common divisor, which is 3:
[tex]\[ \frac{42 \div 3}{99 \div 3} = \frac{14}{33} \][/tex]

Thus, the fractional expansion of the repeating decimal [tex]\( 0.424242 \overline{42} \)[/tex] is:
[tex]\[ \boxed{\frac{14}{33}} \][/tex]