From simple questions to complex issues, IDNLearn.com has the answers you need. Our community is here to provide the comprehensive and accurate answers you need to make informed decisions.

Solve the given linear programming problem.

Maximize [tex]z = 2x + 9y[/tex]

Subject to:
[tex]x \geq 0[/tex]
[tex]y \geq 0[/tex]
[tex]x + y \leq 24[/tex]
[tex]4x + y \geq 24[/tex]
[tex]x + 4y \geq 24[/tex]


Sagot :

To solve the given linear programming problem, we need to maximize the objective function subject to the constraints. Let’s go through this step by step.

### Step 1: Define the Objective Function
The objective function is to maximize [tex]\( z = 2x + 9y \)[/tex].

### Step 2: Define the Constraints
The constraints for the problem are:
1. [tex]\( x \geq 0 \)[/tex]
2. [tex]\( y \geq 0 \)[/tex]
3. [tex]\( x + y \leq 24 \)[/tex]
4. [tex]\( 4x + y \geq 24 \)[/tex]
5. [tex]\( x + 4y \geq 24 \)[/tex]

### Step 3: Convert Inequalities to Suitable Form for Graphical Solution
First, we would reorganize the inequalities if necessary to match typical [tex]\( \leq \)[/tex] or [tex]\( \geq \)[/tex] form for easier graphical representation or standard method solving.

### Step 4: Identify the Feasible Region
The feasible region is the set of all points [tex]\((x, y)\)[/tex] that satisfy all the constraints similar to below:
- The line [tex]\( x + y = 24 \)[/tex] forms an upper boundary.
- The line [tex]\( 4x + y = 24 \)[/tex] creates a lower boundary.
- The line [tex]\( x + 4y = 24 \)[/tex] also creates a lower boundary.
- [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex] limit the feasible region to the first quadrant.

### Step 5: Determine Intersection Points (Vertices)
We need to check either lines intersections points or manually solving as:

- Intersection of [tex]\( x + y = 24 \)[/tex] and [tex]\( 4x + y = 24 \)[/tex]:
[tex]\[ x + y = 24 \\ 4x + y = 24 \implies 3x = 0 \implies x = 0, y = 24 \][/tex]

- Intersection of [tex]\( x + y = 24 \)[/tex] and [tex]\( x + 4y = 24 \)[/tex]:
[tex]\[ x + y = 24 \\ x + 4y = 24 \implies 3y = 0 \implies y = 0, x = 24 \][/tex]

- Intersection of [tex]\( 4x + y = 24 \)[/tex] and [tex]\( x + 4y = 24 \)[/tex] needs less direct visibility, solved typically by substitution or elimination, provide solution but zero:
[tex]\[ y = \frac{24 - 4x}{4}; x=0; y = 6 and intersection not considered feasible. \][/tex]

### Step 6: Evaluate the Objective Function at Each Vertex
Evaluate [tex]\( z = 2x + 9y \)[/tex] for points
1. At [tex]\((0, 24)\)[/tex]
[tex]\[ z = 2(0) + 9(24) = 216 \][/tex]
2. At [tex]\((24, 0)\)[/tex]
[tex]\[ z = 2(24) + 9(0) = 48 \][/tex]

### Step 7: Choose the Maximum Value
Comparing the values, [tex]\( z = 216 \)[/tex] is the largest.

Thus, the values that maximize the objective function [tex]\( 2x + 9y \)[/tex] under the given constraints are:
- [tex]\( x = 0 \)[/tex]
- [tex]\( y = 24 \)[/tex]
- The maximum value [tex]\( z = 216 \)[/tex]

So, the solution to the given linear programming problem is [tex]\( x = 0 \)[/tex], [tex]\( y = 24 \)[/tex], and the maximum value of [tex]\( z = 216 \)[/tex].