Connect with a knowledgeable community and get your questions answered on IDNLearn.com. Our experts provide accurate and detailed responses to help you navigate any topic or issue with confidence.
Sagot :
To determine which matrix multiplication is possible, we need to check the dimensions of the matrices involved in each multiplication. Specifically, for matrix multiplication [tex]\(A (m \times n)\)[/tex] and [tex]\(B (p \times q)\)[/tex] to be possible, the number of columns in [tex]\(A\)[/tex] (which is [tex]\(n\)[/tex]) must equal the number of rows in [tex]\(B\)[/tex] (which is [tex]\(p\)[/tex]).
Let's examine each pair of matrices:
1. [tex]\(\left[\begin{array}{ll}0 & 3\end{array}\right] \times\left[\begin{array}{ll}1 & -4\end{array}\right]\)[/tex]
- The first matrix [tex]\(\left[\begin{array}{ll}0 & 3\end{array}\right]\)[/tex] is a [tex]\(1 \times 2\)[/tex] matrix (1 row, 2 columns).
- The second matrix [tex]\(\left[\begin{array}{ll}1 & -4\end{array}\right]\)[/tex] is a [tex]\(1 \times 2\)[/tex] matrix (1 row, 2 columns).
- For multiplication to be possible, the number of columns in the first matrix (2) must equal the number of rows in the second matrix (1). Here, [tex]\(2 \neq 1\)[/tex], so this multiplication is not possible.
2. [tex]\(\left[\begin{array}{c}3 \\ -2\end{array}\right] \times\left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right]\)[/tex]
- The first matrix [tex]\(\left[\begin{array}{c}3 \\ -2\end{array}\right]\)[/tex] is a [tex]\(2 \times 1\)[/tex] matrix (2 rows, 1 column).
- The second matrix [tex]\(\left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right]\)[/tex] is a [tex]\(2 \times 2\)[/tex] matrix (2 rows, 2 columns).
- For multiplication to be possible, the number of columns in the first matrix (1) must equal the number of rows in the second matrix (2). Here, [tex]\(1 \neq 2\)[/tex], so this multiplication is not possible.
3. [tex]\(\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] \times\left[\begin{array}{ll}3 & 0\end{array}\right]\)[/tex]
- The first matrix [tex]\(\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\)[/tex] is a [tex]\(2 \times 2\)[/tex] matrix (2 rows, 2 columns).
- The second matrix [tex]\(\left[\begin{array}{ll}3 & 0\end{array}\right]\)[/tex] is a [tex]\(1 \times 2\)[/tex] matrix (1 row, 2 columns).
- For multiplication to be possible, the number of columns in the first matrix (2) must equal the number of rows in the second matrix (1). Here, [tex]\(2 \neq 1\)[/tex], so this multiplication is not possible.
4. [tex]\(\left[\begin{array}{c}1 \\ -1\end{array}\right] \times\left[\begin{array}{ll}0 & 4\end{array}\right]\)[/tex]
- The first matrix [tex]\(\left[\begin{array}{c}1 \\ -1\end{array}\right]\)[/tex] is a [tex]\(2 \times 1\)[/tex] matrix (2 rows, 1 column).
- The second matrix [tex]\(\left[\begin{array}{ll}0 & 4\end{array}\right]\)[/tex] is a [tex]\(1 \times 2\)[/tex] matrix (1 row, 2 columns).
- For multiplication to be possible, the number of columns in the first matrix (1) must equal the number of rows in the second matrix (1). Here, [tex]\(1 = 1\)[/tex], so this multiplication is possible.
Thus, the only matrix multiplication that is possible is [tex]\(\left[\begin{array}{c}1 \\ -1\end{array}\right] \times\left[\begin{array}{ll}0 & 4\end{array}\right]\)[/tex].
Let's examine each pair of matrices:
1. [tex]\(\left[\begin{array}{ll}0 & 3\end{array}\right] \times\left[\begin{array}{ll}1 & -4\end{array}\right]\)[/tex]
- The first matrix [tex]\(\left[\begin{array}{ll}0 & 3\end{array}\right]\)[/tex] is a [tex]\(1 \times 2\)[/tex] matrix (1 row, 2 columns).
- The second matrix [tex]\(\left[\begin{array}{ll}1 & -4\end{array}\right]\)[/tex] is a [tex]\(1 \times 2\)[/tex] matrix (1 row, 2 columns).
- For multiplication to be possible, the number of columns in the first matrix (2) must equal the number of rows in the second matrix (1). Here, [tex]\(2 \neq 1\)[/tex], so this multiplication is not possible.
2. [tex]\(\left[\begin{array}{c}3 \\ -2\end{array}\right] \times\left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right]\)[/tex]
- The first matrix [tex]\(\left[\begin{array}{c}3 \\ -2\end{array}\right]\)[/tex] is a [tex]\(2 \times 1\)[/tex] matrix (2 rows, 1 column).
- The second matrix [tex]\(\left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right]\)[/tex] is a [tex]\(2 \times 2\)[/tex] matrix (2 rows, 2 columns).
- For multiplication to be possible, the number of columns in the first matrix (1) must equal the number of rows in the second matrix (2). Here, [tex]\(1 \neq 2\)[/tex], so this multiplication is not possible.
3. [tex]\(\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] \times\left[\begin{array}{ll}3 & 0\end{array}\right]\)[/tex]
- The first matrix [tex]\(\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\)[/tex] is a [tex]\(2 \times 2\)[/tex] matrix (2 rows, 2 columns).
- The second matrix [tex]\(\left[\begin{array}{ll}3 & 0\end{array}\right]\)[/tex] is a [tex]\(1 \times 2\)[/tex] matrix (1 row, 2 columns).
- For multiplication to be possible, the number of columns in the first matrix (2) must equal the number of rows in the second matrix (1). Here, [tex]\(2 \neq 1\)[/tex], so this multiplication is not possible.
4. [tex]\(\left[\begin{array}{c}1 \\ -1\end{array}\right] \times\left[\begin{array}{ll}0 & 4\end{array}\right]\)[/tex]
- The first matrix [tex]\(\left[\begin{array}{c}1 \\ -1\end{array}\right]\)[/tex] is a [tex]\(2 \times 1\)[/tex] matrix (2 rows, 1 column).
- The second matrix [tex]\(\left[\begin{array}{ll}0 & 4\end{array}\right]\)[/tex] is a [tex]\(1 \times 2\)[/tex] matrix (1 row, 2 columns).
- For multiplication to be possible, the number of columns in the first matrix (1) must equal the number of rows in the second matrix (1). Here, [tex]\(1 = 1\)[/tex], so this multiplication is possible.
Thus, the only matrix multiplication that is possible is [tex]\(\left[\begin{array}{c}1 \\ -1\end{array}\right] \times\left[\begin{array}{ll}0 & 4\end{array}\right]\)[/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.