Get the information you need with the help of IDNLearn.com's expert community. Ask your questions and receive accurate, in-depth answers from our knowledgeable community members.
Sagot :
To solve the equation [tex]\((x-3)^2 + 2(x-3) - 8 = 0\)[/tex], we can use substitution to make the process simpler.
Let's define a new variable [tex]\( u \)[/tex] such that:
[tex]\[ u = x - 3 \][/tex]
Now, substitute [tex]\( u \)[/tex] back into the equation:
[tex]\[ (u)^2 + 2(u) - 8 = 0 \][/tex]
We now have a quadratic equation in terms of [tex]\( u \)[/tex]:
[tex]\[ u^2 + 2u - 8 = 0 \][/tex]
To solve this quadratic equation, we can use the quadratic formula:
[tex]\[ u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our equation [tex]\( u^2 + 2u - 8 = 0 \)[/tex], the coefficients are:
[tex]\[ a = 1, \quad b = 2, \quad c = -8 \][/tex]
First, calculate the discriminant [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = 2^2 - 4 \cdot 1 \cdot (-8) = 4 + 32 = 36 \][/tex]
Since the discriminant is positive, we have two distinct real solutions. Now, solve for [tex]\( u \)[/tex]:
[tex]\[ u = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-2 \pm \sqrt{36}}{2 \cdot 1} = \frac{-2 \pm 6}{2} \][/tex]
This gives us two potential values for [tex]\( u \)[/tex]:
[tex]\[ u_1 = \frac{-2 + 6}{2} = \frac{4}{2} = 2 \][/tex]
[tex]\[ u_2 = \frac{-2 - 6}{2} = \frac{-8}{2} = -4 \][/tex]
Recalling our substitution [tex]\( u = x - 3 \)[/tex], we substitute back to find [tex]\( x \)[/tex]:
[tex]\[ 2 = x - 3 \implies x = 2 + 3 = 5 \][/tex]
[tex]\[ -4 = x - 3 \implies x = -4 + 3 = -1 \][/tex]
Therefore, the solutions to the equation [tex]\((x-3)^2 + 2(x-3) - 8 = 0\)[/tex] are:
[tex]\[ x = 5 \quad \text{and} \quad x = -1 \][/tex]
Given the options, the correct answer is:
[tex]\[ \boxed{x = -1 \text{ and } x = 5} \][/tex]
Let's define a new variable [tex]\( u \)[/tex] such that:
[tex]\[ u = x - 3 \][/tex]
Now, substitute [tex]\( u \)[/tex] back into the equation:
[tex]\[ (u)^2 + 2(u) - 8 = 0 \][/tex]
We now have a quadratic equation in terms of [tex]\( u \)[/tex]:
[tex]\[ u^2 + 2u - 8 = 0 \][/tex]
To solve this quadratic equation, we can use the quadratic formula:
[tex]\[ u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our equation [tex]\( u^2 + 2u - 8 = 0 \)[/tex], the coefficients are:
[tex]\[ a = 1, \quad b = 2, \quad c = -8 \][/tex]
First, calculate the discriminant [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = 2^2 - 4 \cdot 1 \cdot (-8) = 4 + 32 = 36 \][/tex]
Since the discriminant is positive, we have two distinct real solutions. Now, solve for [tex]\( u \)[/tex]:
[tex]\[ u = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-2 \pm \sqrt{36}}{2 \cdot 1} = \frac{-2 \pm 6}{2} \][/tex]
This gives us two potential values for [tex]\( u \)[/tex]:
[tex]\[ u_1 = \frac{-2 + 6}{2} = \frac{4}{2} = 2 \][/tex]
[tex]\[ u_2 = \frac{-2 - 6}{2} = \frac{-8}{2} = -4 \][/tex]
Recalling our substitution [tex]\( u = x - 3 \)[/tex], we substitute back to find [tex]\( x \)[/tex]:
[tex]\[ 2 = x - 3 \implies x = 2 + 3 = 5 \][/tex]
[tex]\[ -4 = x - 3 \implies x = -4 + 3 = -1 \][/tex]
Therefore, the solutions to the equation [tex]\((x-3)^2 + 2(x-3) - 8 = 0\)[/tex] are:
[tex]\[ x = 5 \quad \text{and} \quad x = -1 \][/tex]
Given the options, the correct answer is:
[tex]\[ \boxed{x = -1 \text{ and } x = 5} \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.