IDNLearn.com: Your one-stop destination for finding reliable answers. Get accurate and detailed answers to your questions from our dedicated community members who are always ready to help.
Sagot :
Let's solve this problem step-by-step.
### Step 1: Define the Vectors
Given vectors:
[tex]\[ u = \langle -2, 3, -2 \rangle \][/tex]
[tex]\[ v = \langle -4, 3, 2 \rangle \][/tex]
### Step 2: Compute the Cross Product
To find a vector normal to the plane containing [tex]\( u \)[/tex] and [tex]\( v \)[/tex], we calculate their cross product:
[tex]\[ u \times v \][/tex]
Using the determinant method:
[tex]\[ u \times v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 3 & -2 \\ -4 & 3 & 2 \end{vmatrix} \][/tex]
Expanding this determinant:
[tex]\[ u \times v = \mathbf{i} \left( 3 \cdot 2 - (-2) \cdot 3 \right) - \mathbf{j} \left( -2 \cdot 2 - (-2) \cdot -4 \right) + \mathbf{k} \left( -2 \cdot 3 - (-4) \cdot 3 \right) \][/tex]
Simplify each component:
[tex]\[ u \times v = \mathbf{i} (6 + 6) - \mathbf{j} (-4 - 8) + \mathbf{k} (-6 + 12) \][/tex]
[tex]\[ u \times v = \mathbf{i} (12) - \mathbf{j} (-12) + \mathbf{k} (6) \][/tex]
Thus:
[tex]\[ u \times v = 12 \mathbf{i} + 12 \mathbf{j} + 6 \mathbf{k} \][/tex]
So the normal vector is:
[tex]\[ \langle 12, 12, 6 \rangle \][/tex]
### Step 3: Calculate the Magnitude of the Normal Vector
To find the magnitude of the normal vector, we use the formula:
[tex]\[ \| \mathbf{n} \| = \sqrt{n_1^2 + n_2^2 + n_3^2} \][/tex]
Substitute the components of the normal vector:
[tex]\[ \| \mathbf{n} \| = \sqrt{12^2 + 12^2 + 6^2} \][/tex]
[tex]\[ \| \mathbf{n} \| = \sqrt{144 + 144 + 36} \][/tex]
[tex]\[ \| \mathbf{n} \| = \sqrt{324} \][/tex]
[tex]\[ \| \mathbf{n} \| = 18 \][/tex]
### Step 4: Find the Unit Vectors
The unit vectors normal to the plane are found by dividing the normal vector by its magnitude.
The unit vector in the direction of the normal vector is:
[tex]\[ \mathbf{u_1} = \frac{1}{18} \langle 12, 12, 6 \rangle \][/tex]
Simplifying each component:
[tex]\[ \mathbf{u_1} = \left\langle \frac{12}{18}, \frac{12}{18}, \frac{6}{18} \right\rangle \][/tex]
[tex]\[ \mathbf{u_1} = \left\langle \frac{2}{3}, \frac{2}{3}, \frac{1}{3} \right\rangle \][/tex]
And the unit vector in the opposite direction is simply the negative of this vector:
[tex]\[ \mathbf{u_2} = -\mathbf{u_1} \][/tex]
[tex]\[ \mathbf{u_2} = \left\langle -\frac{2}{3}, -\frac{2}{3}, -\frac{1}{3} \right\rangle \][/tex]
### Final Answer:
The two unit vectors normal to the plane containing [tex]\( u \)[/tex] and [tex]\( v \)[/tex] are:
[tex]\[ \mathbf{u_1} = \left\langle \frac{2}{3}, \frac{2}{3}, \frac{1}{3} \right\rangle \][/tex]
[tex]\[ \mathbf{u_2} = \left\langle -\frac{2}{3}, -\frac{2}{3}, -\frac{1}{3} \right\rangle \][/tex]
### Step 1: Define the Vectors
Given vectors:
[tex]\[ u = \langle -2, 3, -2 \rangle \][/tex]
[tex]\[ v = \langle -4, 3, 2 \rangle \][/tex]
### Step 2: Compute the Cross Product
To find a vector normal to the plane containing [tex]\( u \)[/tex] and [tex]\( v \)[/tex], we calculate their cross product:
[tex]\[ u \times v \][/tex]
Using the determinant method:
[tex]\[ u \times v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 3 & -2 \\ -4 & 3 & 2 \end{vmatrix} \][/tex]
Expanding this determinant:
[tex]\[ u \times v = \mathbf{i} \left( 3 \cdot 2 - (-2) \cdot 3 \right) - \mathbf{j} \left( -2 \cdot 2 - (-2) \cdot -4 \right) + \mathbf{k} \left( -2 \cdot 3 - (-4) \cdot 3 \right) \][/tex]
Simplify each component:
[tex]\[ u \times v = \mathbf{i} (6 + 6) - \mathbf{j} (-4 - 8) + \mathbf{k} (-6 + 12) \][/tex]
[tex]\[ u \times v = \mathbf{i} (12) - \mathbf{j} (-12) + \mathbf{k} (6) \][/tex]
Thus:
[tex]\[ u \times v = 12 \mathbf{i} + 12 \mathbf{j} + 6 \mathbf{k} \][/tex]
So the normal vector is:
[tex]\[ \langle 12, 12, 6 \rangle \][/tex]
### Step 3: Calculate the Magnitude of the Normal Vector
To find the magnitude of the normal vector, we use the formula:
[tex]\[ \| \mathbf{n} \| = \sqrt{n_1^2 + n_2^2 + n_3^2} \][/tex]
Substitute the components of the normal vector:
[tex]\[ \| \mathbf{n} \| = \sqrt{12^2 + 12^2 + 6^2} \][/tex]
[tex]\[ \| \mathbf{n} \| = \sqrt{144 + 144 + 36} \][/tex]
[tex]\[ \| \mathbf{n} \| = \sqrt{324} \][/tex]
[tex]\[ \| \mathbf{n} \| = 18 \][/tex]
### Step 4: Find the Unit Vectors
The unit vectors normal to the plane are found by dividing the normal vector by its magnitude.
The unit vector in the direction of the normal vector is:
[tex]\[ \mathbf{u_1} = \frac{1}{18} \langle 12, 12, 6 \rangle \][/tex]
Simplifying each component:
[tex]\[ \mathbf{u_1} = \left\langle \frac{12}{18}, \frac{12}{18}, \frac{6}{18} \right\rangle \][/tex]
[tex]\[ \mathbf{u_1} = \left\langle \frac{2}{3}, \frac{2}{3}, \frac{1}{3} \right\rangle \][/tex]
And the unit vector in the opposite direction is simply the negative of this vector:
[tex]\[ \mathbf{u_2} = -\mathbf{u_1} \][/tex]
[tex]\[ \mathbf{u_2} = \left\langle -\frac{2}{3}, -\frac{2}{3}, -\frac{1}{3} \right\rangle \][/tex]
### Final Answer:
The two unit vectors normal to the plane containing [tex]\( u \)[/tex] and [tex]\( v \)[/tex] are:
[tex]\[ \mathbf{u_1} = \left\langle \frac{2}{3}, \frac{2}{3}, \frac{1}{3} \right\rangle \][/tex]
[tex]\[ \mathbf{u_2} = \left\langle -\frac{2}{3}, -\frac{2}{3}, -\frac{1}{3} \right\rangle \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.