IDNLearn.com makes it easy to find accurate answers to your questions. Whether your question is simple or complex, our community is here to provide detailed and trustworthy answers quickly and effectively.

Find the amplitude, period (in radians), phase shift (in radians), vertical shift, and vertical asymptotes (if any) of the function:

[tex]\[ f(x) = \sec \left( \frac{\theta}{6} + \frac{\pi}{6} \right) \][/tex]


Sagot :

Let's analyze the given function:

[tex]\[ f(\theta) = \sec \left(\frac{\theta}{6} + \frac{\pi}{6}\right) \][/tex]

### Amplitude
The secant function does not have an amplitude because it is not bounded. Therefore:

[tex]\[ \text{Amplitude: None} \][/tex]

### Period
To find the period of the function, we use the coefficient of [tex]\(\theta\)[/tex] inside the secant function. The period [tex]\(P\)[/tex] of the secant function is given by:

[tex]\[ P = \frac{2\pi}{\text{coefficient of }\theta} \][/tex]

In our function, the coefficient of [tex]\(\theta\)[/tex] is [tex]\(\frac{1}{6}\)[/tex]. Therefore:

[tex]\[ P = \frac{2\pi}{\frac{1}{6}} = 2\pi \cdot 6 = 12\pi \][/tex]

[tex]\[ \text{Period: } 37.69911184307752 \text{ radians} \][/tex]

### Phase Shift
The phase shift [tex]\(\phi\)[/tex] occurs due to the term added inside the secant function. The phase shift formula is:

[tex]\[ \phi = -\frac{\text{term inside with }\theta}{\text{coefficient of }\theta} \][/tex]

Here, our inside term is [tex]\(\frac{\pi}{6}\)[/tex] and the coefficient of [tex]\(\theta\)[/tex] is [tex]\(\frac{1}{6}\)[/tex]:

[tex]\[ \phi = -\frac{\frac{\pi}{6}}{\frac{1}{6}} = -\pi \][/tex]

[tex]\[ \text{Phase shift: } -3.141592653589793 \text{ radians} \][/tex]

### Vertical Shift
There is no term outside the secant function that vertically shifts the graph up or down, so the vertical shift is:

[tex]\[ \text{Vertical shift: } 0 \][/tex]

### Vertical Asymptotes
Vertical asymptotes occur where the argument of the secant function equals an odd multiple of [tex]\(\frac{\pi}{2}\)[/tex]:

[tex]\[ \frac{\theta}{6} + \frac{\pi}{6} = (2n + 1)\frac{\pi}{2} \][/tex]

where [tex]\(n\)[/tex] is an integer. To solve for [tex]\(\theta\)[/tex]:

[tex]\[ \frac{\theta}{6} = (2n + 1)\frac{\pi}{2} - \frac{\pi}{6} \][/tex]

[tex]\[ \theta = 6 \left[(2n + 1)\frac{\pi}{2} - \frac{\pi}{6}\right] = 6\left[\frac{3(2n + 1)\pi - \pi}{6}\right] = 6\left[\frac{(2n + 1 - \frac{1}{3})\pi}{1}\right] \][/tex]

[tex]\[ \theta = 3\pi(2n + \frac{2}{3}) \][/tex]

Therefore, the vertical asymptotes are located at:

[tex]\[ \theta = 3\pi(2n + \frac{2}{3}) \][/tex]

A few vertical asymptotes within one period are:

[tex]\[ -87.96459430051421, -69.11503837897544, -50.26548245743669, -31.41592653589793, -12.566370614359174, 6.283185307179586, 25.132741228718345, 43.982297150257104, 62.83185307179586, 81.68140899333461, 100.53096491487338 \][/tex]

So, summarizing all parts:

[tex]\[ \begin{align*} \text{Amplitude:} &\ \text{None} \\ \text{Period:} &\ 37.69911184307752\ \text{radians} \\ \text{Phase Shift:} &\ -3.141592653589793\ \text{radians} \\ \text{Vertical Shift:} &\ 0 \\ \text{Vertical Asymptotes:} &\ -87.96459430051421, -69.11503837897544, -50.26548245743669, -31.41592653589793, -12.566370614359174, 6.283185307179586, 25.132741228718345, 43.982297150257104, 62.83185307179586, 81.68140899333461, 100.53096491487338 \end{align*} \][/tex]