Dive into the world of knowledge and get your queries resolved at IDNLearn.com. Find the information you need quickly and easily with our reliable and thorough Q&A platform.
Sagot :
Certainly! Let's calculate the pH at the equivalence point for the titration of 0.230 M methylamine [tex]\((\text{CH}_3\text{NH}_2)\)[/tex] with 0.230 M HCl.
### Step-by-Step Solution:
1. Given:
- Concentration of methylamine: [tex]\(0.230 \, \text{M}\)[/tex]
- Concentration of HCl: [tex]\(0.230 \, \text{M}\)[/tex]
- [tex]\(K_b\)[/tex] of methylamine: [tex]\(5.0 \times 10^{-4}\)[/tex]
2. Determine [tex]\(K_a\)[/tex] for the Conjugate Acid:
Methylamine is a weak base, and at the equivalence point, we need to consider its conjugate acid. The [tex]\(K_a\)[/tex] value of the conjugate acid [tex]\((\text{CH}_3\text{NH}_3^+)\)[/tex] can be found using the relationship between [tex]\(K_a\)[/tex] and [tex]\(K_b\)[/tex]:
[tex]\[ K_w = 1.0 \times 10^{-14} \][/tex]
[tex]\[ K_a = \frac{K_w}{K_b} = \frac{1.0 \times 10^{-14}}{5.0 \times 10^{-4}} = 2.0 \times 10^{-11} \][/tex]
3. Calculate [tex]\(pK_a\)[/tex]:
[tex]\[ pK_a = -\log_{10}(K_a) \][/tex]
[tex]\[ pK_a = -\log_{10}(2.0 \times 10^{-11}) \approx 10.70 \][/tex]
4. Consider the Equivalence Point:
At the equivalence point, the methylamine has been neutralized by HCl to form its conjugate acid [tex]\((\text{CH}_3\text{NH}_3^+)\)[/tex]. The concentration of [tex]\(\text{CH}_3\text{NH}_3^+\)[/tex] will be 0.230 M (same as the initial concentration of methylamine).
5. Set Up the ICE Table for the Conjugate Acid Dissociation:
[tex]\[ \text{CH}_3\text{NH}_3^+ \leftrightharpoons \text{CH}_3\text{NH}_2 + \text{H}^+ \][/tex]
- Initial: [tex]\([\text{CH}_3\text{NH}_3^+] = 0.230 \, \text{M}\)[/tex], [[tex]\(\text{H}^+\)[/tex]] = 0, [[tex]\(\text{CH}_3\text{NH}_2\)[/tex]] = 0
- Change: [tex]\([\text{CH}_3\text{NH}_3^+]\)[/tex] decreases by [tex]\(x\)[/tex], [[tex]\(\text{H}^+\)[/tex]] increases by [tex]\(x\)[/tex], [[tex]\(\text{CH}_3\text{NH}_2\)[/tex]] increases by [tex]\(x\)[/tex]
- Equilibrium: [tex]\([\text{CH}_3\text{NH}_3^+] = 0.230 - x\)[/tex], [[tex]\(\text{H}^+\)[/tex]] = [tex]\(x\)[/tex], [[tex]\(\text{CH}_3\text{NH}_2\)[/tex]] = [tex]\(x\)[/tex]
The [tex]\(K_a\)[/tex] expression is:
[tex]\[ K_a = \frac{[\text{H}^+][\text{CH}_3\text{NH}_2]}{[\text{CH}_3\text{NH}_3^+]} = \frac{x^2}{(0.230 - x)} \][/tex]
6. Assume [tex]\(x\)[/tex] is Small Compared to 0.230 M:
[tex]\[ K_a \approx \frac{x^2}{0.230} \][/tex]
[tex]\[ 2.0 \times 10^{-11} = \frac{x^2}{0.230} \][/tex]
[tex]\[ x^2 = (2.0 \times 10^{-11}) \times 0.230 \][/tex]
[tex]\[ x \approx \sqrt{(2.0 \times 10^{-11}) \times 0.230} \approx 2.1447610589527217 \times 10^{-6} \, \text{M} \][/tex]
Here, [tex]\(x\)[/tex] represents the [tex]\([\text{H}^+]\)[/tex] concentration.
7. Calculate pH:
[tex]\[ \text{pH} = -\log_{10}(x) \][/tex]
[tex]\[ \text{pH} = -\log_{10}(2.1447610589527217 \times 10^{-6}) \approx 5.67 \][/tex]
### Final Answer:
The pH at the equivalence point for the titration of 0.230 M methylamine with 0.230 M HCl is approximately 5.67.
### Step-by-Step Solution:
1. Given:
- Concentration of methylamine: [tex]\(0.230 \, \text{M}\)[/tex]
- Concentration of HCl: [tex]\(0.230 \, \text{M}\)[/tex]
- [tex]\(K_b\)[/tex] of methylamine: [tex]\(5.0 \times 10^{-4}\)[/tex]
2. Determine [tex]\(K_a\)[/tex] for the Conjugate Acid:
Methylamine is a weak base, and at the equivalence point, we need to consider its conjugate acid. The [tex]\(K_a\)[/tex] value of the conjugate acid [tex]\((\text{CH}_3\text{NH}_3^+)\)[/tex] can be found using the relationship between [tex]\(K_a\)[/tex] and [tex]\(K_b\)[/tex]:
[tex]\[ K_w = 1.0 \times 10^{-14} \][/tex]
[tex]\[ K_a = \frac{K_w}{K_b} = \frac{1.0 \times 10^{-14}}{5.0 \times 10^{-4}} = 2.0 \times 10^{-11} \][/tex]
3. Calculate [tex]\(pK_a\)[/tex]:
[tex]\[ pK_a = -\log_{10}(K_a) \][/tex]
[tex]\[ pK_a = -\log_{10}(2.0 \times 10^{-11}) \approx 10.70 \][/tex]
4. Consider the Equivalence Point:
At the equivalence point, the methylamine has been neutralized by HCl to form its conjugate acid [tex]\((\text{CH}_3\text{NH}_3^+)\)[/tex]. The concentration of [tex]\(\text{CH}_3\text{NH}_3^+\)[/tex] will be 0.230 M (same as the initial concentration of methylamine).
5. Set Up the ICE Table for the Conjugate Acid Dissociation:
[tex]\[ \text{CH}_3\text{NH}_3^+ \leftrightharpoons \text{CH}_3\text{NH}_2 + \text{H}^+ \][/tex]
- Initial: [tex]\([\text{CH}_3\text{NH}_3^+] = 0.230 \, \text{M}\)[/tex], [[tex]\(\text{H}^+\)[/tex]] = 0, [[tex]\(\text{CH}_3\text{NH}_2\)[/tex]] = 0
- Change: [tex]\([\text{CH}_3\text{NH}_3^+]\)[/tex] decreases by [tex]\(x\)[/tex], [[tex]\(\text{H}^+\)[/tex]] increases by [tex]\(x\)[/tex], [[tex]\(\text{CH}_3\text{NH}_2\)[/tex]] increases by [tex]\(x\)[/tex]
- Equilibrium: [tex]\([\text{CH}_3\text{NH}_3^+] = 0.230 - x\)[/tex], [[tex]\(\text{H}^+\)[/tex]] = [tex]\(x\)[/tex], [[tex]\(\text{CH}_3\text{NH}_2\)[/tex]] = [tex]\(x\)[/tex]
The [tex]\(K_a\)[/tex] expression is:
[tex]\[ K_a = \frac{[\text{H}^+][\text{CH}_3\text{NH}_2]}{[\text{CH}_3\text{NH}_3^+]} = \frac{x^2}{(0.230 - x)} \][/tex]
6. Assume [tex]\(x\)[/tex] is Small Compared to 0.230 M:
[tex]\[ K_a \approx \frac{x^2}{0.230} \][/tex]
[tex]\[ 2.0 \times 10^{-11} = \frac{x^2}{0.230} \][/tex]
[tex]\[ x^2 = (2.0 \times 10^{-11}) \times 0.230 \][/tex]
[tex]\[ x \approx \sqrt{(2.0 \times 10^{-11}) \times 0.230} \approx 2.1447610589527217 \times 10^{-6} \, \text{M} \][/tex]
Here, [tex]\(x\)[/tex] represents the [tex]\([\text{H}^+]\)[/tex] concentration.
7. Calculate pH:
[tex]\[ \text{pH} = -\log_{10}(x) \][/tex]
[tex]\[ \text{pH} = -\log_{10}(2.1447610589527217 \times 10^{-6}) \approx 5.67 \][/tex]
### Final Answer:
The pH at the equivalence point for the titration of 0.230 M methylamine with 0.230 M HCl is approximately 5.67.
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for trusting IDNLearn.com with your questions. Visit us again for clear, concise, and accurate answers.