Discover new perspectives and gain insights with IDNLearn.com. Our platform provides trustworthy answers to help you make informed decisions quickly and easily.
Sagot :
Let's solve this problem step-by-step:
1. Identify the given values:
- Volume of the solution ([tex]\( V \)[/tex]) = 0.400 liters (L)
- Molarity of the solution ([tex]\( M \)[/tex]) = 0.350 moles per liter (M)
2. Determine the molar mass of KBr:
KBr is composed of potassium (K) and bromine (Br).
- Atomic mass of potassium (K) = 39.1 g/mol
- Atomic mass of bromine (Br) = 79.9 g/mol
Therefore, the molar mass of KBr ([tex]\( M_{\text{KBr}} \)[/tex]) is:
[tex]\[ M_{\text{KBr}} = 39.1 \, \text{g/mol} + 79.9 \, \text{g/mol} = 119.0 \, \text{g/mol} \][/tex]
3. Calculate the number of moles of KBr in the solution:
Molarity is defined as the number of moles of solute per liter of solution ([tex]\( M = \frac{\text{moles}}{\text{liters}} \)[/tex]).
Rearranging this formula to find the number of moles ([tex]\( n \)[/tex]):
[tex]\[ n = M \times V \][/tex]
Substituting the given values:
[tex]\[ n = 0.350 \, \text{M} \times 0.400 \, \text{L} = 0.140 \, \text{moles} \][/tex]
4. Calculate the mass of KBr in the solution:
The mass of KBr can be determined using the formula:
[tex]\[ \text{mass} = n \times M_{\text{KBr}} \][/tex]
Substituting the values of [tex]\( n \)[/tex] and [tex]\( M_{\text{KBr}} \)[/tex]:
[tex]\[ \text{mass} = 0.140 \, \text{moles} \times 119.0 \, \text{g/mol} = 16.66 \, \text{grams} \][/tex]
Therefore, the mass of KBr in 0.400 liters of a 0.350 M solution is 16.66 grams.
1. Identify the given values:
- Volume of the solution ([tex]\( V \)[/tex]) = 0.400 liters (L)
- Molarity of the solution ([tex]\( M \)[/tex]) = 0.350 moles per liter (M)
2. Determine the molar mass of KBr:
KBr is composed of potassium (K) and bromine (Br).
- Atomic mass of potassium (K) = 39.1 g/mol
- Atomic mass of bromine (Br) = 79.9 g/mol
Therefore, the molar mass of KBr ([tex]\( M_{\text{KBr}} \)[/tex]) is:
[tex]\[ M_{\text{KBr}} = 39.1 \, \text{g/mol} + 79.9 \, \text{g/mol} = 119.0 \, \text{g/mol} \][/tex]
3. Calculate the number of moles of KBr in the solution:
Molarity is defined as the number of moles of solute per liter of solution ([tex]\( M = \frac{\text{moles}}{\text{liters}} \)[/tex]).
Rearranging this formula to find the number of moles ([tex]\( n \)[/tex]):
[tex]\[ n = M \times V \][/tex]
Substituting the given values:
[tex]\[ n = 0.350 \, \text{M} \times 0.400 \, \text{L} = 0.140 \, \text{moles} \][/tex]
4. Calculate the mass of KBr in the solution:
The mass of KBr can be determined using the formula:
[tex]\[ \text{mass} = n \times M_{\text{KBr}} \][/tex]
Substituting the values of [tex]\( n \)[/tex] and [tex]\( M_{\text{KBr}} \)[/tex]:
[tex]\[ \text{mass} = 0.140 \, \text{moles} \times 119.0 \, \text{g/mol} = 16.66 \, \text{grams} \][/tex]
Therefore, the mass of KBr in 0.400 liters of a 0.350 M solution is 16.66 grams.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your questions deserve reliable answers. Thanks for visiting IDNLearn.com, and see you again soon for more helpful information.