IDNLearn.com connects you with experts who provide accurate and reliable answers. Join our community to receive timely and reliable responses to your questions from knowledgeable professionals.
Sagot :
Let's solve this problem step-by-step:
1. Identify the given values:
- Volume of the solution ([tex]\( V \)[/tex]) = 0.400 liters (L)
- Molarity of the solution ([tex]\( M \)[/tex]) = 0.350 moles per liter (M)
2. Determine the molar mass of KBr:
KBr is composed of potassium (K) and bromine (Br).
- Atomic mass of potassium (K) = 39.1 g/mol
- Atomic mass of bromine (Br) = 79.9 g/mol
Therefore, the molar mass of KBr ([tex]\( M_{\text{KBr}} \)[/tex]) is:
[tex]\[ M_{\text{KBr}} = 39.1 \, \text{g/mol} + 79.9 \, \text{g/mol} = 119.0 \, \text{g/mol} \][/tex]
3. Calculate the number of moles of KBr in the solution:
Molarity is defined as the number of moles of solute per liter of solution ([tex]\( M = \frac{\text{moles}}{\text{liters}} \)[/tex]).
Rearranging this formula to find the number of moles ([tex]\( n \)[/tex]):
[tex]\[ n = M \times V \][/tex]
Substituting the given values:
[tex]\[ n = 0.350 \, \text{M} \times 0.400 \, \text{L} = 0.140 \, \text{moles} \][/tex]
4. Calculate the mass of KBr in the solution:
The mass of KBr can be determined using the formula:
[tex]\[ \text{mass} = n \times M_{\text{KBr}} \][/tex]
Substituting the values of [tex]\( n \)[/tex] and [tex]\( M_{\text{KBr}} \)[/tex]:
[tex]\[ \text{mass} = 0.140 \, \text{moles} \times 119.0 \, \text{g/mol} = 16.66 \, \text{grams} \][/tex]
Therefore, the mass of KBr in 0.400 liters of a 0.350 M solution is 16.66 grams.
1. Identify the given values:
- Volume of the solution ([tex]\( V \)[/tex]) = 0.400 liters (L)
- Molarity of the solution ([tex]\( M \)[/tex]) = 0.350 moles per liter (M)
2. Determine the molar mass of KBr:
KBr is composed of potassium (K) and bromine (Br).
- Atomic mass of potassium (K) = 39.1 g/mol
- Atomic mass of bromine (Br) = 79.9 g/mol
Therefore, the molar mass of KBr ([tex]\( M_{\text{KBr}} \)[/tex]) is:
[tex]\[ M_{\text{KBr}} = 39.1 \, \text{g/mol} + 79.9 \, \text{g/mol} = 119.0 \, \text{g/mol} \][/tex]
3. Calculate the number of moles of KBr in the solution:
Molarity is defined as the number of moles of solute per liter of solution ([tex]\( M = \frac{\text{moles}}{\text{liters}} \)[/tex]).
Rearranging this formula to find the number of moles ([tex]\( n \)[/tex]):
[tex]\[ n = M \times V \][/tex]
Substituting the given values:
[tex]\[ n = 0.350 \, \text{M} \times 0.400 \, \text{L} = 0.140 \, \text{moles} \][/tex]
4. Calculate the mass of KBr in the solution:
The mass of KBr can be determined using the formula:
[tex]\[ \text{mass} = n \times M_{\text{KBr}} \][/tex]
Substituting the values of [tex]\( n \)[/tex] and [tex]\( M_{\text{KBr}} \)[/tex]:
[tex]\[ \text{mass} = 0.140 \, \text{moles} \times 119.0 \, \text{g/mol} = 16.66 \, \text{grams} \][/tex]
Therefore, the mass of KBr in 0.400 liters of a 0.350 M solution is 16.66 grams.
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.