Connect with knowledgeable individuals and get your questions answered on IDNLearn.com. Join our Q&A platform to access reliable and detailed answers from experts in various fields.
Sagot :
To determine the molar solubility [tex]\( S \)[/tex] of lead(II) carbonate ([tex]\( PbCO_3 \)[/tex]), given the solubility product constant [tex]\( K_{sp} = 7.40 \times 10^{-14} \)[/tex], we can follow these steps:
1. Write the dissociation equation:
[tex]\( PbCO_3(s) \leftrightarrow Pb^{2+}(aq) + CO_3^{2-}(aq) \)[/tex]
2. Express the concentrations at equilibrium:
Let [tex]\( S \)[/tex] be the molar solubility of [tex]\( PbCO_3 \)[/tex].
At equilibrium:
[tex]\[ [Pb^{2+}] = S \][/tex]
[tex]\[ [CO_3^{2-}] = S \][/tex]
3. Write the expression for the solubility product constant ([tex]\( K_{sp} \)[/tex]):
[tex]\[ K_{sp} = [Pb^{2+}][CO_3^{2-}] \][/tex]
Since both ions have the same concentration [tex]\( S \)[/tex] at equilibrium, the expression becomes:
[tex]\[ K_{sp} = S \times S = S^2 \][/tex]
4. Solve for the molar solubility [tex]\( S \)[/tex]:
[tex]\[ K_{sp} = S^2 \][/tex]
[tex]\[ S = \sqrt{K_{sp}} \][/tex]
Substituting the value of [tex]\( K_{sp} \)[/tex]:
[tex]\[ S = \sqrt{7.40 \times 10^{-14}} \][/tex]
[tex]\[ S = 2.7202941017470887 \times 10^{-7} \][/tex]
Thus, the molar solubility [tex]\( S \)[/tex] of [tex]\( PbCO_3 \)[/tex] is approximately:
[tex]\[ S = 2.7202941017470887 \times 10^{-7} \, M \][/tex]
This indicates that the solubility of lead(II) carbonate in water is very low due to its small solubility product constant.
1. Write the dissociation equation:
[tex]\( PbCO_3(s) \leftrightarrow Pb^{2+}(aq) + CO_3^{2-}(aq) \)[/tex]
2. Express the concentrations at equilibrium:
Let [tex]\( S \)[/tex] be the molar solubility of [tex]\( PbCO_3 \)[/tex].
At equilibrium:
[tex]\[ [Pb^{2+}] = S \][/tex]
[tex]\[ [CO_3^{2-}] = S \][/tex]
3. Write the expression for the solubility product constant ([tex]\( K_{sp} \)[/tex]):
[tex]\[ K_{sp} = [Pb^{2+}][CO_3^{2-}] \][/tex]
Since both ions have the same concentration [tex]\( S \)[/tex] at equilibrium, the expression becomes:
[tex]\[ K_{sp} = S \times S = S^2 \][/tex]
4. Solve for the molar solubility [tex]\( S \)[/tex]:
[tex]\[ K_{sp} = S^2 \][/tex]
[tex]\[ S = \sqrt{K_{sp}} \][/tex]
Substituting the value of [tex]\( K_{sp} \)[/tex]:
[tex]\[ S = \sqrt{7.40 \times 10^{-14}} \][/tex]
[tex]\[ S = 2.7202941017470887 \times 10^{-7} \][/tex]
Thus, the molar solubility [tex]\( S \)[/tex] of [tex]\( PbCO_3 \)[/tex] is approximately:
[tex]\[ S = 2.7202941017470887 \times 10^{-7} \, M \][/tex]
This indicates that the solubility of lead(II) carbonate in water is very low due to its small solubility product constant.
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.