IDNLearn.com: Your go-to resource for finding precise and accurate answers. Find accurate and detailed answers to your questions from our experienced and dedicated community members.

Find the area of the surface generated by revolving the curve [tex]$y=\frac{x^3}{9}$[/tex], [tex]$0 \leq x \leq 2$[/tex], about the [tex][tex]$x$[/tex][/tex]-axis.

Set up the integral that gives the area of the given surface.


Sagot :

To solve this problem, we need to determine the area of the surface generated by revolving the given curve around the [tex]\( x \)[/tex]-axis.

The general formula for the surface area [tex]\( S \)[/tex] of a solid of revolution about the [tex]\( x \)[/tex]-axis is:

[tex]\[ S = 2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \][/tex]

Given the curve [tex]\( y = \frac{x^3}{9} \)[/tex] and the interval [tex]\( 0 \leq x \leq 2 \)[/tex]:

1. Determine [tex]\( y \)[/tex] and [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ y = \frac{x^3}{9} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} \left( \frac{x^3}{9} \right) = \frac{3x^2}{9} = \frac{x^2}{3} \][/tex]

2. Compute [tex]\( 1 + \left(\frac{dy}{dx}\right)^2 \)[/tex]:
[tex]\[ \left(\frac{dy}{dx}\right)^2 = \left(\frac{x^2}{3}\right)^2 = \frac{x^4}{9} \][/tex]
[tex]\[ 1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{x^4}{9} \][/tex]

3. Set up the integral:
[tex]\[ S = 2\pi \int_{0}^{2} \left( \frac{x^3}{9} \right) \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]

Now, we have to integrate this expression:

[tex]\[ S = 2\pi \int_{0}^{2} \frac{x^3}{9} \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]

Simplify the constant factor:
[tex]\[ S = \frac{2\pi}{9} \int_{0}^{2} x^3 \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]

So, the integral set up for the area of the surface generated by revolving the curve [tex]\( y = \frac{x^3}{9} \)[/tex] around the [tex]\( x \)[/tex]-axis over the interval [tex]\([0, 2]\)[/tex] is:

[tex]\[ S = \frac{2\pi}{9} \int_{0}^{2} x^3 \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]