Find detailed and accurate answers to your questions on IDNLearn.com. Ask any question and receive comprehensive, well-informed responses from our dedicated team of experts.
Sagot :
To identify the graph of the equation [tex]\( y = 20 \left(\frac{1}{4}\right)^x \)[/tex], let's break down the components of this exponential function and understand its behavior step-by-step.
### 1. Understanding the Exponential Function
The equation [tex]\( y = 20 \left(\frac{1}{4}\right)^x \)[/tex] is in the form of [tex]\( y = a \cdot b^x \)[/tex]:
- [tex]\( a = 20 \)[/tex]
- [tex]\( b = \frac{1}{4} \)[/tex]
Here, [tex]\( a \)[/tex] is a constant multiplier and [tex]\( b \)[/tex] is the base of the exponent.
### 2. The Base [tex]\(\frac{1}{4}\)[/tex]
Since [tex]\( b = \frac{1}{4} \)[/tex], which is a fraction less than 1:
- The function [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] is a decreasing function.
- As [tex]\( x \)[/tex] increases, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] approaches 0.
### 3. The Multiplier 20
The multiplier [tex]\( a = 20 \)[/tex] scales the function vertically:
- It stretches the graph upwards by a factor of 20.
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 20 \cdot 1 = 20 \)[/tex].
### 4. Behavior and Key Points
Let's evaluate the function at some specific points to understand its shape:
- When [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 20 \left(\frac{1}{4}\right)^0 = 20 \cdot 1 = 20 \][/tex]
The graph passes through the point [tex]\((0, 20)\)[/tex].
- When [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 20 \left(\frac{1}{4}\right)^1 = 20 \cdot \frac{1}{4} = 5 \][/tex]
The graph passes through the point [tex]\((1, 5)\)[/tex].
- When [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 20 \left(\frac{1}{4}\right)^{-1} = 20 \cdot 4 = 80 \][/tex]
The graph passes through the point [tex]\((-1, 80)\)[/tex].
- As [tex]\( x \)[/tex] approaches infinity ([tex]\(+\infty\)[/tex]):
[tex]\[ \left(\frac{1}{4}\right)^x \to 0 \quad \text{and hence} \quad y \to 0 \][/tex]
The graph asymptotically approaches the x-axis but never touches it.
- As [tex]\( x \)[/tex] approaches negative infinity ([tex]\(-\infty\)[/tex]):
[tex]\[ \left(\frac{1}{4}\right)^x \to \infty \quad \text{and hence} \quad y \to \infty \][/tex]
The graph rises sharply to very large values.
### 5. Graphing the Function
Given these key points and behavior:
- The graph is a decreasing curve.
- It starts from [tex]\( y = \infty \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\(-\infty\)[/tex].
- It intercepts at [tex]\( y = 20 \)[/tex] when [tex]\( x = 0 \)[/tex].
- It approaches [tex]\( y = 0 \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex], but never touches the x-axis.
### 6. Sketching the Graph
You can visualize the graph with the following properties:
- Passes through [tex]\((-1, 80)\)[/tex], [tex]\((0, 20)\)[/tex], and [tex]\((1, 5)\)[/tex].
- Asymptotically approaches the x-axis.
The graph looks like this:
![Graph](https://latex.codecogs.com/svg.latex?%5Cbegin%7Barray%7D%7Bc%7D%0A%5Ctextbf%7B20%20%281/4%29%5Ex%20Graph%20Sketch%7D%0A%5Cend%7Barray%7D%0A)
Always remember, for [tex]\( x \)[/tex] approaching negative values, the value of y grows rapidly, forming an exponential decay curve. For positive values of [tex]\( x \)[/tex], the function value diminishes towards zero.
By understanding these steps, you can accurately plot the exponential function [tex]\( y = 20 \left(\frac{1}{4}\right)^x \)[/tex] and predict its graphical behavior.
### 1. Understanding the Exponential Function
The equation [tex]\( y = 20 \left(\frac{1}{4}\right)^x \)[/tex] is in the form of [tex]\( y = a \cdot b^x \)[/tex]:
- [tex]\( a = 20 \)[/tex]
- [tex]\( b = \frac{1}{4} \)[/tex]
Here, [tex]\( a \)[/tex] is a constant multiplier and [tex]\( b \)[/tex] is the base of the exponent.
### 2. The Base [tex]\(\frac{1}{4}\)[/tex]
Since [tex]\( b = \frac{1}{4} \)[/tex], which is a fraction less than 1:
- The function [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] is a decreasing function.
- As [tex]\( x \)[/tex] increases, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] approaches 0.
### 3. The Multiplier 20
The multiplier [tex]\( a = 20 \)[/tex] scales the function vertically:
- It stretches the graph upwards by a factor of 20.
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 20 \cdot 1 = 20 \)[/tex].
### 4. Behavior and Key Points
Let's evaluate the function at some specific points to understand its shape:
- When [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 20 \left(\frac{1}{4}\right)^0 = 20 \cdot 1 = 20 \][/tex]
The graph passes through the point [tex]\((0, 20)\)[/tex].
- When [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 20 \left(\frac{1}{4}\right)^1 = 20 \cdot \frac{1}{4} = 5 \][/tex]
The graph passes through the point [tex]\((1, 5)\)[/tex].
- When [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 20 \left(\frac{1}{4}\right)^{-1} = 20 \cdot 4 = 80 \][/tex]
The graph passes through the point [tex]\((-1, 80)\)[/tex].
- As [tex]\( x \)[/tex] approaches infinity ([tex]\(+\infty\)[/tex]):
[tex]\[ \left(\frac{1}{4}\right)^x \to 0 \quad \text{and hence} \quad y \to 0 \][/tex]
The graph asymptotically approaches the x-axis but never touches it.
- As [tex]\( x \)[/tex] approaches negative infinity ([tex]\(-\infty\)[/tex]):
[tex]\[ \left(\frac{1}{4}\right)^x \to \infty \quad \text{and hence} \quad y \to \infty \][/tex]
The graph rises sharply to very large values.
### 5. Graphing the Function
Given these key points and behavior:
- The graph is a decreasing curve.
- It starts from [tex]\( y = \infty \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\(-\infty\)[/tex].
- It intercepts at [tex]\( y = 20 \)[/tex] when [tex]\( x = 0 \)[/tex].
- It approaches [tex]\( y = 0 \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex], but never touches the x-axis.
### 6. Sketching the Graph
You can visualize the graph with the following properties:
- Passes through [tex]\((-1, 80)\)[/tex], [tex]\((0, 20)\)[/tex], and [tex]\((1, 5)\)[/tex].
- Asymptotically approaches the x-axis.
The graph looks like this:
![Graph](https://latex.codecogs.com/svg.latex?%5Cbegin%7Barray%7D%7Bc%7D%0A%5Ctextbf%7B20%20%281/4%29%5Ex%20Graph%20Sketch%7D%0A%5Cend%7Barray%7D%0A)
Always remember, for [tex]\( x \)[/tex] approaching negative values, the value of y grows rapidly, forming an exponential decay curve. For positive values of [tex]\( x \)[/tex], the function value diminishes towards zero.
By understanding these steps, you can accurately plot the exponential function [tex]\( y = 20 \left(\frac{1}{4}\right)^x \)[/tex] and predict its graphical behavior.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. For reliable answers to all your questions, please visit us again soon.