Connect with experts and get insightful answers to your questions on IDNLearn.com. Our platform provides accurate, detailed responses to help you navigate any topic with ease.
Sagot :
To express [tex]\( y(t) = 2 \sin (4\pi t) + 5 \cos (4\pi t) \)[/tex] in the form [tex]\( y(t) = A \sin (\omega t + \phi) \)[/tex], we need to determine the amplitude [tex]\( A \)[/tex], the angular frequency [tex]\( \omega \)[/tex], and the phase shift [tex]\( \phi \)[/tex] of the spring motion.
Let's begin with the calculations:
1. Amplitude [tex]\( A \)[/tex]:
The amplitude [tex]\( A \)[/tex] is found using the formula:
[tex]\[ A = \sqrt{a^2 + b^2} \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the coefficients of the sine and cosine terms, respectively. Here, [tex]\( a = 2 \)[/tex] and [tex]\( b = 5 \)[/tex].
[tex]\[ A = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \][/tex]
Substituting gives us:
[tex]\[ A \approx 5.385 \][/tex]
2. Angular Frequency [tex]\( \omega \)[/tex]:
The angular frequency [tex]\( \omega \)[/tex] is the same for both sine and cosine functions present in the original equation. It is given by:
[tex]\[ \omega = 4\pi \][/tex]
3. Phase Shift [tex]\( \phi \)[/tex]:
The phase shift [tex]\( \phi \)[/tex] can be calculated using the arctangent function:
[tex]\[ \phi = \arctan\left(\frac{b}{a}\right) \][/tex]
where [tex]\( a = 2 \)[/tex] and [tex]\( b = 5 \)[/tex].
[tex]\[ \phi = \arctan\left(\frac{5}{2}\right) \][/tex]
Substituting gives us:
[tex]\[ \phi \approx 1.190 \][/tex]
Now, we can write [tex]\( y(t) \)[/tex] in the desired form by substituting these values into the equation [tex]\( y(t) = A \sin (\omega t + \phi) \)[/tex]:
[tex]\[ y(t) = 5.385 \sin (4\pi t + 1.190) \][/tex]
In summary, the amplitude [tex]\( A \)[/tex] is approximately [tex]\( 5.385 \)[/tex], the angular frequency [tex]\( \omega \)[/tex] is [tex]\( 4\pi \)[/tex], and the phase shift [tex]\( \phi \)[/tex] is approximately [tex]\( 1.190 \)[/tex].
Let's begin with the calculations:
1. Amplitude [tex]\( A \)[/tex]:
The amplitude [tex]\( A \)[/tex] is found using the formula:
[tex]\[ A = \sqrt{a^2 + b^2} \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the coefficients of the sine and cosine terms, respectively. Here, [tex]\( a = 2 \)[/tex] and [tex]\( b = 5 \)[/tex].
[tex]\[ A = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \][/tex]
Substituting gives us:
[tex]\[ A \approx 5.385 \][/tex]
2. Angular Frequency [tex]\( \omega \)[/tex]:
The angular frequency [tex]\( \omega \)[/tex] is the same for both sine and cosine functions present in the original equation. It is given by:
[tex]\[ \omega = 4\pi \][/tex]
3. Phase Shift [tex]\( \phi \)[/tex]:
The phase shift [tex]\( \phi \)[/tex] can be calculated using the arctangent function:
[tex]\[ \phi = \arctan\left(\frac{b}{a}\right) \][/tex]
where [tex]\( a = 2 \)[/tex] and [tex]\( b = 5 \)[/tex].
[tex]\[ \phi = \arctan\left(\frac{5}{2}\right) \][/tex]
Substituting gives us:
[tex]\[ \phi \approx 1.190 \][/tex]
Now, we can write [tex]\( y(t) \)[/tex] in the desired form by substituting these values into the equation [tex]\( y(t) = A \sin (\omega t + \phi) \)[/tex]:
[tex]\[ y(t) = 5.385 \sin (4\pi t + 1.190) \][/tex]
In summary, the amplitude [tex]\( A \)[/tex] is approximately [tex]\( 5.385 \)[/tex], the angular frequency [tex]\( \omega \)[/tex] is [tex]\( 4\pi \)[/tex], and the phase shift [tex]\( \phi \)[/tex] is approximately [tex]\( 1.190 \)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to assisting you again.