Join IDNLearn.com and become part of a knowledge-sharing community that thrives on curiosity. Discover in-depth answers from knowledgeable professionals, providing you with the information you need.
Sagot :
To solve for the divergence of the vector field [tex]\(\frac{\bar{a} \times \bar{r}}{r^n}\)[/tex], we start by understanding the components involved.
Given:
- [tex]\(\bar{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}\)[/tex]
- [tex]\(r = |\bar{r}| = \sqrt{x^2 + y^2 + z^2}\)[/tex]
- [tex]\(\bar{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}\)[/tex]
- We need to find [tex]\(\operatorname{div}\left(\frac{\bar{a} \times \bar{r}}{r^n}\right)\)[/tex]
The cross product [tex]\(\bar{a} \times \bar{r}\)[/tex] is given by:
[tex]\[ \bar{a} \times \bar{r} = \left|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ x & y & z \\ \end{array}\right| = (a_y z - a_z y)\mathbf{i} + (a_z x - a_x z)\mathbf{j} + (a_x y - a_y x)\mathbf{k} \][/tex]
This can be written as:
[tex]\[ \bar{a} \times \bar{r} = [(a_y z - a_z y), (a_z x - a_x z), (a_x y - a_y x)] \][/tex]
Now, consider the vector field:
[tex]\[ \mathbf{F} = \frac{\bar{a} \times \bar{r}}{r^n} = \left( \frac{a_y z - a_z y}{r^n}, \frac{a_z x - a_x z}{r^n}, \frac{a_x y - a_y x}{r^n} \right) \][/tex]
We need to compute [tex]\(\operatorname{div}(\mathbf{F})\)[/tex], which is:
[tex]\[ \operatorname{div}(\mathbf{F}) = \frac{\partial}{\partial x} \left( \frac{a_y z - a_z y}{r^n} \right) + \frac{\partial}{\partial y} \left( \frac{a_z x - a_x z}{r^n} \right) + \frac{\partial}{\partial z} \left( \frac{a_x y - a_y x}{r^n} \right) \][/tex]
To compute these partial derivatives, use the quotient rule:
[tex]\[ \frac{\partial}{\partial u} \left( \frac{g(v)}{h(v)} \right) = \frac{h(v) \frac{\partial g(v)}{\partial u} - g(v) \frac{\partial h(v)}{\partial u}}{h(v)^2} \][/tex]
Let's calculate each term separately:
1. [tex]\(\frac{\partial}{\partial x} \left( \frac{a_y z - a_z y}{r^n} \right)\)[/tex]:
- [tex]\(g(x, y, z) = a_y z - a_z y\)[/tex]
- [tex]\(h(x, y, z) = r^n\)[/tex]
[tex]\[ \frac{\partial}{\partial x} (a_y z - a_z y) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial x} r^n = n r^{n-2} x \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( \frac{a_y z - a_z y}{r^n} \right) = \frac{(r^n \cdot 0 - (a_y z - a_z y) \cdot n r^{n-2} x)}{r^{2n}} = -\frac{n x (a_y z - a_z y)}{r^{n+2}} \][/tex]
Similarly, for other terms:
2. [tex]\(\frac{\partial}{\partial y} \left( \frac{a_z x - a_x z}{r^n} \right) = -\frac{n y (a_z x - a_x z)}{r^{n+2}}\)[/tex]
3. [tex]\(\frac{\partial}{\partial z} \left( \frac{a_x y - a_y x}{r^n} \right) = -\frac{n z (a_x y - a_y x)}{r^{n+2}}\)[/tex]
Adding these together:
[tex]\[ \operatorname{div}(\mathbf{F}) = -\frac{n x (a_y z - a_z y)}{r^{n+2}} - \frac{n y (a_z x - a_x z)}{r^{n+2}} - \frac{n z (a_x y - a_y x)}{r^{n+2}} \][/tex]
Notice that each term involves a specific arrangement of constants and variables, leading to the cancellation due to the linearity of the vector components and symmetry. Upon simplifying:
[tex]\[ \operatorname{div}(\mathbf{F}) = 0 \][/tex]
Thus, the divergence of the given vector field is:
[tex]\[ \operatorname{div} \left( \frac{\bar{a} \times \bar{r}}{r^n} \right) = 0 \][/tex]
Given:
- [tex]\(\bar{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}\)[/tex]
- [tex]\(r = |\bar{r}| = \sqrt{x^2 + y^2 + z^2}\)[/tex]
- [tex]\(\bar{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}\)[/tex]
- We need to find [tex]\(\operatorname{div}\left(\frac{\bar{a} \times \bar{r}}{r^n}\right)\)[/tex]
The cross product [tex]\(\bar{a} \times \bar{r}\)[/tex] is given by:
[tex]\[ \bar{a} \times \bar{r} = \left|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ x & y & z \\ \end{array}\right| = (a_y z - a_z y)\mathbf{i} + (a_z x - a_x z)\mathbf{j} + (a_x y - a_y x)\mathbf{k} \][/tex]
This can be written as:
[tex]\[ \bar{a} \times \bar{r} = [(a_y z - a_z y), (a_z x - a_x z), (a_x y - a_y x)] \][/tex]
Now, consider the vector field:
[tex]\[ \mathbf{F} = \frac{\bar{a} \times \bar{r}}{r^n} = \left( \frac{a_y z - a_z y}{r^n}, \frac{a_z x - a_x z}{r^n}, \frac{a_x y - a_y x}{r^n} \right) \][/tex]
We need to compute [tex]\(\operatorname{div}(\mathbf{F})\)[/tex], which is:
[tex]\[ \operatorname{div}(\mathbf{F}) = \frac{\partial}{\partial x} \left( \frac{a_y z - a_z y}{r^n} \right) + \frac{\partial}{\partial y} \left( \frac{a_z x - a_x z}{r^n} \right) + \frac{\partial}{\partial z} \left( \frac{a_x y - a_y x}{r^n} \right) \][/tex]
To compute these partial derivatives, use the quotient rule:
[tex]\[ \frac{\partial}{\partial u} \left( \frac{g(v)}{h(v)} \right) = \frac{h(v) \frac{\partial g(v)}{\partial u} - g(v) \frac{\partial h(v)}{\partial u}}{h(v)^2} \][/tex]
Let's calculate each term separately:
1. [tex]\(\frac{\partial}{\partial x} \left( \frac{a_y z - a_z y}{r^n} \right)\)[/tex]:
- [tex]\(g(x, y, z) = a_y z - a_z y\)[/tex]
- [tex]\(h(x, y, z) = r^n\)[/tex]
[tex]\[ \frac{\partial}{\partial x} (a_y z - a_z y) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial x} r^n = n r^{n-2} x \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( \frac{a_y z - a_z y}{r^n} \right) = \frac{(r^n \cdot 0 - (a_y z - a_z y) \cdot n r^{n-2} x)}{r^{2n}} = -\frac{n x (a_y z - a_z y)}{r^{n+2}} \][/tex]
Similarly, for other terms:
2. [tex]\(\frac{\partial}{\partial y} \left( \frac{a_z x - a_x z}{r^n} \right) = -\frac{n y (a_z x - a_x z)}{r^{n+2}}\)[/tex]
3. [tex]\(\frac{\partial}{\partial z} \left( \frac{a_x y - a_y x}{r^n} \right) = -\frac{n z (a_x y - a_y x)}{r^{n+2}}\)[/tex]
Adding these together:
[tex]\[ \operatorname{div}(\mathbf{F}) = -\frac{n x (a_y z - a_z y)}{r^{n+2}} - \frac{n y (a_z x - a_x z)}{r^{n+2}} - \frac{n z (a_x y - a_y x)}{r^{n+2}} \][/tex]
Notice that each term involves a specific arrangement of constants and variables, leading to the cancellation due to the linearity of the vector components and symmetry. Upon simplifying:
[tex]\[ \operatorname{div}(\mathbf{F}) = 0 \][/tex]
Thus, the divergence of the given vector field is:
[tex]\[ \operatorname{div} \left( \frac{\bar{a} \times \bar{r}}{r^n} \right) = 0 \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. For trustworthy and accurate answers, visit IDNLearn.com. Thanks for stopping by, and see you next time for more solutions.