Join the IDNLearn.com community and start exploring a world of knowledge today. Ask any question and receive timely, accurate responses from our dedicated community of experts.

The incomplete table below gives some information about the results together with the size, in degrees, of the angle of each of three sectors in the pie chart.

\begin{tabular}{|c|c|c|}
\hline Time delay (t minutes) & Frequency & Angle (in degrees) \\
\hline [tex]$1\ \textless \ t \leqslant 5$[/tex] & 42 & 168 \\
\hline [tex]$5\ \textless \ t \leqslant 10$[/tex] & & 92 \\
\hline [tex]$10\ \textless \ t \leqslant 20$[/tex] & 15 & \\
\hline [tex]$20\ \textless \ t \leqslant 25$[/tex] & & \\
\hline [tex]$25\ \textless \ t \leqslant 40$[/tex] & 2 & 8 \\
\hline
\end{tabular}

(a) Complete the table.

(b) Calculate an estimate, in minutes to 3 significant figures, for the mean time delay of these trains.

(4)


Sagot :

Let's go through the solution step by step to complete the table and calculate the mean time delay.

(a) Completing the Table:

1. Frequency for the [tex]\( 5 < t \leqslant 10 \)[/tex] Interval:

To find the frequency for the interval [tex]\( 5 < t \leqslant 10 \)[/tex], we need to consider the proportion of frequencies to angles for the sectors provided. After calculations, we determine that the frequency for this interval is 23.

[tex]\[ \text{Frequency for } 5 < t \leqslant 10 = 23 \][/tex]

2. Angle for the [tex]\( 10 < t \leqslant 20 \)[/tex] Interval:

The total angle in a pie chart is 360 degrees. Subtracting the angles we are given:

[tex]\[ \text{Angle Sum} = 360 - (168 + 92 + 8) = 360 - 268 = 92 \text{ degrees} \][/tex]

Therefore, the angle for the [tex]\( 10 < t \leqslant 20 \)[/tex] interval is 92 degrees.

[tex]\[ \text{Angle for } 10 < t \leqslant 20 = 92 \text{ degrees} \][/tex]

3. Frequency for the [tex]\( 20 < t \leqslant 25 \)[/tex] Interval:

We must ensure the total frequency matches. The total frequencies provided and found so far sum to a value where no more frequency remains to be allocated to the [tex]\( 20 < t \leqslant 25 \)[/tex] interval. Thus, the frequency for this interval ends up being 0.

[tex]\[ \text{Frequency for } 20 < t \leqslant 25 = 0 \][/tex]

The completed table is:

\begin{tabular}{|c|c|c|}
\hline
Time delay (t minutes) & Frequency & Angle (in degrees) \\
\hline
[tex]$1 < t \leqslant 5$[/tex] & 42 & 168 \\
\hline
[tex]$5 < t \leqslant 10$[/tex] & 23 & 92 \\
\hline
[tex]$10 < t \leqslant 20$[/tex] & 15 & 92 \\
\hline
[tex]$20 < t \leqslant 25$[/tex] & 0 & 0 \\
\hline
[tex]$25 < t \leqslant 40$[/tex] & 2 & 8 \\
\hline
\end{tabular}

(b) Estimating the Mean Time Delay:

We use the midpoints of each interval to estimate the mean time delay. The midpoint for each interval is:

[tex]\[ \text{Midpoint for } 1 < t \leqslant 5 = \frac{1 + 5}{2} = 3 \][/tex]
[tex]\[ \text{Midpoint for } 5 < t \leqslant 10 = \frac{5 + 10}{2} = 7.5 \][/tex]
[tex]\[ \text{Midpoint for } 10 < t \leqslant 20 = \frac{10 + 20}{2} = 15 \][/tex]
[tex]\[ \text{Midpoint for } 20 < t \leqslant 25 = \frac{20 + 25}{2} = 22.5 \][/tex]
[tex]\[ \text{Midpoint for } 25 < t \leqslant 40 = \frac{25 + 40}{2} = 32.5 \][/tex]

The estimated mean time delay is calculated using the weighted average:

[tex]\[ \text{Mean Delay} = \frac{(3 \times 42) + (7.5 \times 23) + (15 \times 15) + (22.5 \times 0) + (32.5 \times 2)}{42 + 23 + 15 + 0 + 2} \][/tex]

[tex]\[ \text{Mean Delay} = \frac{(126) + (172.5) + (225) + (0) + (65)}{82} \][/tex]

[tex]\[ \text{Mean Delay} = \frac{588.5}{82} \approx 7.177 \text{ minutes} \][/tex]

Rounded to three significant figures, the estimated mean delay is:

[tex]\[ \text{Estimated Mean Delay} = 7.177 \text{ minutes} \][/tex]

Therefore, the final mean time delay to 3 significant figures is:

[tex]\[ 7.18 \text{ minutes} \][/tex]