Expand your horizons with the diverse and informative answers found on IDNLearn.com. Our platform provides prompt, accurate answers from experts ready to assist you with any question you may have.
Sagot :
To determine the velocity of a particle given its acceleration vector [tex]\(\vec{a}\)[/tex], we need to integrate the acceleration with respect to time. Here, the acceleration vector is provided as:
[tex]\[ \vec{a} = \cos(t) \vec{i} + \sin(t) \vec{j} + 3t \vec{k} \][/tex]
Given that the particle starts from rest, the initial velocity vector [tex]\(\vec{v}(0) = 0\)[/tex].
### Step-by-Step Solution:
1. Express the components of acceleration:
- [tex]\(a_x = \cos(t)\)[/tex]
- [tex]\(a_y = \sin(t)\)[/tex]
- [tex]\(a_z = 3t\)[/tex]
2. Integrate each component of the acceleration with respect to [tex]\(t\)[/tex] to find the components of the velocity:
- The [tex]\(x\)[/tex]-component of velocity:
[tex]\[ v_x(t) = \int \cos(t) \, dt \][/tex]
- The [tex]\(y\)[/tex]-component of velocity:
[tex]\[ v_y(t) = \int \sin(t) \, dt \][/tex]
- The [tex]\(z\)[/tex]-component of velocity:
[tex]\[ v_z(t) = \int 3t \, dt \][/tex]
3. Compute each integral:
- For [tex]\(v_x(t)\)[/tex]:
[tex]\[ v_x(t) = \int \cos(t) \, dt = \sin(t) + C_1 \][/tex]
- For [tex]\(v_y(t)\)[/tex]:
[tex]\[ v_y(t) = \int \sin(t) \, dt = -\cos(t) + C_2 \][/tex]
- For [tex]\(v_z(t)\)[/tex]:
[tex]\[ v_z(t) = \int 3t \, dt = \frac{3t^2}{2} + C_3 \][/tex]
4. Apply the initial condition ([tex]\(\vec{v}(0) = 0\)[/tex]) to find the constants of integration [tex]\(C_1\)[/tex], [tex]\(C_2\)[/tex], and [tex]\(C_3\)[/tex]:
- When [tex]\(t = 0\)[/tex]:
[tex]\[ 0 = \sin(0) + C_1 \implies C_1 = 0 \][/tex]
[tex]\[ 0 = -\cos(0) + C_2 \implies C_2 = 1 \][/tex]
[tex]\[ 0 = \frac{3 \cdot 0^2}{2} + C_3 \implies C_3 = 0 \][/tex]
5. Substitute the constants back into the velocity components:
- [tex]\(v_x(t) = \sin(t)\)[/tex]
- [tex]\(v_y(t) = -\cos(t) + 1\)[/tex]
- [tex]\(v_z(t) = \frac{3t^2}{2}\)[/tex]
6. Combine the components to form the velocity vector [tex]\(\vec{v}(t)\)[/tex]:
[tex]\[ \vec{v}(t) = \sin(t) \vec{i} + (-\cos(t) + 1) \vec{j} + \frac{3t^2}{2} \vec{k} \][/tex]
### Final Answer:
The velocity of the particle as a function of time [tex]\(t\)[/tex], given that it starts from rest, is:
[tex]\[ \boxed{\vec{v}(t) = \sin(t) \vec{i} + (-\cos(t) + 1) \vec{j} + \frac{3t^2}{2} \vec{k}} \][/tex]
[tex]\[ \vec{a} = \cos(t) \vec{i} + \sin(t) \vec{j} + 3t \vec{k} \][/tex]
Given that the particle starts from rest, the initial velocity vector [tex]\(\vec{v}(0) = 0\)[/tex].
### Step-by-Step Solution:
1. Express the components of acceleration:
- [tex]\(a_x = \cos(t)\)[/tex]
- [tex]\(a_y = \sin(t)\)[/tex]
- [tex]\(a_z = 3t\)[/tex]
2. Integrate each component of the acceleration with respect to [tex]\(t\)[/tex] to find the components of the velocity:
- The [tex]\(x\)[/tex]-component of velocity:
[tex]\[ v_x(t) = \int \cos(t) \, dt \][/tex]
- The [tex]\(y\)[/tex]-component of velocity:
[tex]\[ v_y(t) = \int \sin(t) \, dt \][/tex]
- The [tex]\(z\)[/tex]-component of velocity:
[tex]\[ v_z(t) = \int 3t \, dt \][/tex]
3. Compute each integral:
- For [tex]\(v_x(t)\)[/tex]:
[tex]\[ v_x(t) = \int \cos(t) \, dt = \sin(t) + C_1 \][/tex]
- For [tex]\(v_y(t)\)[/tex]:
[tex]\[ v_y(t) = \int \sin(t) \, dt = -\cos(t) + C_2 \][/tex]
- For [tex]\(v_z(t)\)[/tex]:
[tex]\[ v_z(t) = \int 3t \, dt = \frac{3t^2}{2} + C_3 \][/tex]
4. Apply the initial condition ([tex]\(\vec{v}(0) = 0\)[/tex]) to find the constants of integration [tex]\(C_1\)[/tex], [tex]\(C_2\)[/tex], and [tex]\(C_3\)[/tex]:
- When [tex]\(t = 0\)[/tex]:
[tex]\[ 0 = \sin(0) + C_1 \implies C_1 = 0 \][/tex]
[tex]\[ 0 = -\cos(0) + C_2 \implies C_2 = 1 \][/tex]
[tex]\[ 0 = \frac{3 \cdot 0^2}{2} + C_3 \implies C_3 = 0 \][/tex]
5. Substitute the constants back into the velocity components:
- [tex]\(v_x(t) = \sin(t)\)[/tex]
- [tex]\(v_y(t) = -\cos(t) + 1\)[/tex]
- [tex]\(v_z(t) = \frac{3t^2}{2}\)[/tex]
6. Combine the components to form the velocity vector [tex]\(\vec{v}(t)\)[/tex]:
[tex]\[ \vec{v}(t) = \sin(t) \vec{i} + (-\cos(t) + 1) \vec{j} + \frac{3t^2}{2} \vec{k} \][/tex]
### Final Answer:
The velocity of the particle as a function of time [tex]\(t\)[/tex], given that it starts from rest, is:
[tex]\[ \boxed{\vec{v}(t) = \sin(t) \vec{i} + (-\cos(t) + 1) \vec{j} + \frac{3t^2}{2} \vec{k}} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. IDNLearn.com provides the best answers to your questions. Thank you for visiting, and come back soon for more helpful information.