IDNLearn.com helps you find the answers you need quickly and efficiently. Join our interactive community and get comprehensive, reliable answers to all your questions.
Sagot :
To solve the quadratic equation [tex]\( x^2 + 2x + 7 = 21 \)[/tex], we need to follow these steps:
1. Rearrange the equation to standard form: The given equation is [tex]\( x^2 + 2x + 7 = 21 \)[/tex]. To bring it to the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], subtract 21 from both sides:
[tex]\[ x^2 + 2x + 7 - 21 = 0 \][/tex]
Simplifying, we get:
[tex]\[ x^2 + 2x - 14 = 0 \][/tex]
2. Identify the coefficients: From the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], we have:
[tex]\[ a = 1, \quad b = 2, \quad c = -14 \][/tex]
3. Calculate the discriminant: The discriminant [tex]\(\Delta\)[/tex] of the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Plugging in the coefficients, we get:
[tex]\[ \Delta = 2^2 - 4 \cdot 1 \cdot (-14) = 4 + 56 = 60 \][/tex]
4. Determine the solutions: The quadratic formula for the roots [tex]\( x \)[/tex] of the equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substituting the given values:
[tex]\[ x = \frac{-2 \pm \sqrt{60}}{2 \cdot 1} \][/tex]
Simplifying further:
[tex]\[ x = \frac{-2 \pm \sqrt{60}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{60}}{2} \][/tex]
Solving, we get two roots [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex]:
[tex]\[ x_1 = \frac{-2 + \sqrt{60}}{2}, \quad x_2 = \frac{-2 - \sqrt{60}}{2} \][/tex]
5. Determine the number of positive solutions:
[tex]\[ \sqrt{60} \approx 7.75 \][/tex]
For [tex]\( x_1 \)[/tex]:
[tex]\[ x_1 = \frac{-2 + 7.75}{2} \approx \frac{5.75}{2} \approx 2.87 \][/tex]
For [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = \frac{-2 - 7.75}{2} \approx \frac{-9.75}{2} \approx -4.87 \][/tex]
Since [tex]\( x_1 \)[/tex] is positive and [tex]\( x_2 \)[/tex] is negative, there is only 1 positive solution.
6. Round the greatest solution to the nearest hundredth: The greatest solution is [tex]\( x_1 \)[/tex], which is approximately 2.87.
So, the number of positive solutions is [tex]\( \boxed{1} \)[/tex], and the approximate value of the greatest solution, rounded to the nearest hundredth, is [tex]\( \boxed{2.87} \)[/tex].
1. Rearrange the equation to standard form: The given equation is [tex]\( x^2 + 2x + 7 = 21 \)[/tex]. To bring it to the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], subtract 21 from both sides:
[tex]\[ x^2 + 2x + 7 - 21 = 0 \][/tex]
Simplifying, we get:
[tex]\[ x^2 + 2x - 14 = 0 \][/tex]
2. Identify the coefficients: From the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], we have:
[tex]\[ a = 1, \quad b = 2, \quad c = -14 \][/tex]
3. Calculate the discriminant: The discriminant [tex]\(\Delta\)[/tex] of the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Plugging in the coefficients, we get:
[tex]\[ \Delta = 2^2 - 4 \cdot 1 \cdot (-14) = 4 + 56 = 60 \][/tex]
4. Determine the solutions: The quadratic formula for the roots [tex]\( x \)[/tex] of the equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substituting the given values:
[tex]\[ x = \frac{-2 \pm \sqrt{60}}{2 \cdot 1} \][/tex]
Simplifying further:
[tex]\[ x = \frac{-2 \pm \sqrt{60}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{60}}{2} \][/tex]
Solving, we get two roots [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex]:
[tex]\[ x_1 = \frac{-2 + \sqrt{60}}{2}, \quad x_2 = \frac{-2 - \sqrt{60}}{2} \][/tex]
5. Determine the number of positive solutions:
[tex]\[ \sqrt{60} \approx 7.75 \][/tex]
For [tex]\( x_1 \)[/tex]:
[tex]\[ x_1 = \frac{-2 + 7.75}{2} \approx \frac{5.75}{2} \approx 2.87 \][/tex]
For [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = \frac{-2 - 7.75}{2} \approx \frac{-9.75}{2} \approx -4.87 \][/tex]
Since [tex]\( x_1 \)[/tex] is positive and [tex]\( x_2 \)[/tex] is negative, there is only 1 positive solution.
6. Round the greatest solution to the nearest hundredth: The greatest solution is [tex]\( x_1 \)[/tex], which is approximately 2.87.
So, the number of positive solutions is [tex]\( \boxed{1} \)[/tex], and the approximate value of the greatest solution, rounded to the nearest hundredth, is [tex]\( \boxed{2.87} \)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.