IDNLearn.com is your go-to platform for finding reliable answers quickly. Our platform offers comprehensive and accurate responses to help you make informed decisions on any topic.
Sagot :
Sure! Let's solve the problem step-by-step:
1. Identify the given information:
- Spring constant ([tex]\(k\)[/tex]): 1400 N/m
- Stretched length of the spring ([tex]\(L_s\)[/tex]): 2.5 m
- Original (unstretched) length of the spring ([tex]\(L_o\)[/tex]): 1.0 m
2. Calculate the deformation (stretch) of the spring:
The deformation ([tex]\(x\)[/tex]) is the difference between the stretched length and the original length:
[tex]\[ x = L_s - L_o \][/tex]
Given:
[tex]\[ L_s = 2.5 \, \text{m} \][/tex]
[tex]\[ L_o = 1.0 \\, \text{m} \][/tex]
Substitute these values:
[tex]\[ x = 2.5 \, \text{m} - 1.0 \, \text{m} \][/tex]
[tex]\[ x = 1.5 \, \text{m} \][/tex]
3. Calculate the elastic potential energy stored in the spring:
The formula to calculate elastic potential energy ([tex]\(E\)[/tex]) stored in a spring is:
[tex]\[ E = \frac{1}{2} k x^2 \][/tex]
Here:
- [tex]\(k\)[/tex] is the spring constant (1400 N/m)
- [tex]\(x\)[/tex] is the deformation (1.5 m)
Substitute the values into the formula:
[tex]\[ E = \frac{1}{2} \times 1400 \, \frac{\text{N}}{\text{m}} \times (1.5 \, \text{m})^2 \][/tex]
[tex]\[ E = \frac{1}{2} \times 1400 \times 2.25 \][/tex]
[tex]\[ E = \frac{1}{2} \times 3150 \][/tex]
[tex]\[ E = 1575 \, \text{J} \][/tex]
4. Conclusion:
The elastic potential energy stored in the spring when it is stretched to a length of 2.5 m is 1575 J.
Therefore, the correct answer is:
[tex]\[ \text{1575 J} \][/tex]
1. Identify the given information:
- Spring constant ([tex]\(k\)[/tex]): 1400 N/m
- Stretched length of the spring ([tex]\(L_s\)[/tex]): 2.5 m
- Original (unstretched) length of the spring ([tex]\(L_o\)[/tex]): 1.0 m
2. Calculate the deformation (stretch) of the spring:
The deformation ([tex]\(x\)[/tex]) is the difference between the stretched length and the original length:
[tex]\[ x = L_s - L_o \][/tex]
Given:
[tex]\[ L_s = 2.5 \, \text{m} \][/tex]
[tex]\[ L_o = 1.0 \\, \text{m} \][/tex]
Substitute these values:
[tex]\[ x = 2.5 \, \text{m} - 1.0 \, \text{m} \][/tex]
[tex]\[ x = 1.5 \, \text{m} \][/tex]
3. Calculate the elastic potential energy stored in the spring:
The formula to calculate elastic potential energy ([tex]\(E\)[/tex]) stored in a spring is:
[tex]\[ E = \frac{1}{2} k x^2 \][/tex]
Here:
- [tex]\(k\)[/tex] is the spring constant (1400 N/m)
- [tex]\(x\)[/tex] is the deformation (1.5 m)
Substitute the values into the formula:
[tex]\[ E = \frac{1}{2} \times 1400 \, \frac{\text{N}}{\text{m}} \times (1.5 \, \text{m})^2 \][/tex]
[tex]\[ E = \frac{1}{2} \times 1400 \times 2.25 \][/tex]
[tex]\[ E = \frac{1}{2} \times 3150 \][/tex]
[tex]\[ E = 1575 \, \text{J} \][/tex]
4. Conclusion:
The elastic potential energy stored in the spring when it is stretched to a length of 2.5 m is 1575 J.
Therefore, the correct answer is:
[tex]\[ \text{1575 J} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.