Find answers to your questions and expand your knowledge with IDNLearn.com. Discover in-depth and trustworthy answers from our extensive network of knowledgeable professionals.
Sagot :
Sure! Let's solve the problem step-by-step:
1. Identify the given information:
- Spring constant ([tex]\(k\)[/tex]): 1400 N/m
- Stretched length of the spring ([tex]\(L_s\)[/tex]): 2.5 m
- Original (unstretched) length of the spring ([tex]\(L_o\)[/tex]): 1.0 m
2. Calculate the deformation (stretch) of the spring:
The deformation ([tex]\(x\)[/tex]) is the difference between the stretched length and the original length:
[tex]\[ x = L_s - L_o \][/tex]
Given:
[tex]\[ L_s = 2.5 \, \text{m} \][/tex]
[tex]\[ L_o = 1.0 \\, \text{m} \][/tex]
Substitute these values:
[tex]\[ x = 2.5 \, \text{m} - 1.0 \, \text{m} \][/tex]
[tex]\[ x = 1.5 \, \text{m} \][/tex]
3. Calculate the elastic potential energy stored in the spring:
The formula to calculate elastic potential energy ([tex]\(E\)[/tex]) stored in a spring is:
[tex]\[ E = \frac{1}{2} k x^2 \][/tex]
Here:
- [tex]\(k\)[/tex] is the spring constant (1400 N/m)
- [tex]\(x\)[/tex] is the deformation (1.5 m)
Substitute the values into the formula:
[tex]\[ E = \frac{1}{2} \times 1400 \, \frac{\text{N}}{\text{m}} \times (1.5 \, \text{m})^2 \][/tex]
[tex]\[ E = \frac{1}{2} \times 1400 \times 2.25 \][/tex]
[tex]\[ E = \frac{1}{2} \times 3150 \][/tex]
[tex]\[ E = 1575 \, \text{J} \][/tex]
4. Conclusion:
The elastic potential energy stored in the spring when it is stretched to a length of 2.5 m is 1575 J.
Therefore, the correct answer is:
[tex]\[ \text{1575 J} \][/tex]
1. Identify the given information:
- Spring constant ([tex]\(k\)[/tex]): 1400 N/m
- Stretched length of the spring ([tex]\(L_s\)[/tex]): 2.5 m
- Original (unstretched) length of the spring ([tex]\(L_o\)[/tex]): 1.0 m
2. Calculate the deformation (stretch) of the spring:
The deformation ([tex]\(x\)[/tex]) is the difference between the stretched length and the original length:
[tex]\[ x = L_s - L_o \][/tex]
Given:
[tex]\[ L_s = 2.5 \, \text{m} \][/tex]
[tex]\[ L_o = 1.0 \\, \text{m} \][/tex]
Substitute these values:
[tex]\[ x = 2.5 \, \text{m} - 1.0 \, \text{m} \][/tex]
[tex]\[ x = 1.5 \, \text{m} \][/tex]
3. Calculate the elastic potential energy stored in the spring:
The formula to calculate elastic potential energy ([tex]\(E\)[/tex]) stored in a spring is:
[tex]\[ E = \frac{1}{2} k x^2 \][/tex]
Here:
- [tex]\(k\)[/tex] is the spring constant (1400 N/m)
- [tex]\(x\)[/tex] is the deformation (1.5 m)
Substitute the values into the formula:
[tex]\[ E = \frac{1}{2} \times 1400 \, \frac{\text{N}}{\text{m}} \times (1.5 \, \text{m})^2 \][/tex]
[tex]\[ E = \frac{1}{2} \times 1400 \times 2.25 \][/tex]
[tex]\[ E = \frac{1}{2} \times 3150 \][/tex]
[tex]\[ E = 1575 \, \text{J} \][/tex]
4. Conclusion:
The elastic potential energy stored in the spring when it is stretched to a length of 2.5 m is 1575 J.
Therefore, the correct answer is:
[tex]\[ \text{1575 J} \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.