Connect with a community of experts and enthusiasts on IDNLearn.com. Join our Q&A platform to access reliable and detailed answers from experts in various fields.
Sagot :
To determine whether the Mean Value Theorem (MVT) applies to the function [tex]\( f(x)=x^{-\frac{1}{3}} \)[/tex] on the interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex], we need to verify two conditions:
1. The function must be continuous on the closed interval [tex]\([a, b]\)[/tex].
2. The function must be differentiable on the open interval [tex]\((a, b)\)[/tex].
Let's analyze [tex]\(f(x) = x^{-\frac{1}{3}}\)[/tex].
### Continuity
The function [tex]\( f(x) = x^{-\frac{1}{3}} \)[/tex] is a power function and is continuous for all [tex]\( x > 0 \)[/tex]. The interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex] is entirely positive (since [tex]\( \frac{1}{27} > 0 \)[/tex]), so [tex]\( f(x) \)[/tex] is continuous on [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex].
### Differentiability
Next, we need to check if [tex]\( f(x) \)[/tex] is differentiable on [tex]\((\frac{1}{27}, 27)\)[/tex]. The derivative of [tex]\( f(x) \)[/tex] is
[tex]\[ f'(x) = \left( x^{-\frac{1}{3}} \right)' = -\frac{1}{3} x^{-\frac{4}{3}}. \][/tex]
[tex]\( f'(x) \)[/tex] is defined for all [tex]\( x > 0 \)[/tex]. In our interval [tex]\( (\frac{1}{27}, 27) \)[/tex], all [tex]\( x \)[/tex] values are greater than [tex]\( 0 \)[/tex], so [tex]\( f(x) \)[/tex] is differentiable on [tex]\((\frac{1}{27}, 27)\)[/tex].
Since both conditions of the Mean Value Theorem are satisfied, we can say that:
### a. Determine whether the Mean Value Theorem applies to the given function on the interval [tex]\([a, b]\)[/tex].
The correct answer is:
C. Yes, because the function is continuous on the interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex] and differentiable on the interval [tex]\(\left(\frac{1}{27}, 27\right)\)[/tex].
### b. Finding the point(s) guaranteed to exist by the Mean Value Theorem
The Mean Value Theorem states that if [tex]\( f \)[/tex] is continuous on [tex]\([a, b]\)[/tex] and differentiable on [tex]\( (a, b) \)[/tex], then there exists at least one [tex]\( c \in (a, b) \)[/tex] such that:
[tex]\[ f'(c) = \frac{f(b) - f(a)}{b - a}. \][/tex]
Let's calculate the right side for our function:
[tex]\[ f(a) = \left( \frac{1}{27} \right)^{-\frac{1}{3}} = 27, \][/tex]
[tex]\[ f(b) = 27^{-\frac{1}{3}} = \frac{1}{3}, \][/tex]
[tex]\[ b - a = 27 - \frac{1}{27}. \][/tex]
Thus,
[tex]\[ \frac{f(b) - f(a)}{b - a} = \frac{\frac{1}{3} - 27}{27 - \frac{1}{27}}. \][/tex]
Simplify this expression:
[tex]\[ \frac{\frac{1}{3} - 27}{27 - \frac{1}{27}} = \frac{\frac{1}{3} - 27}{27 - \frac{1}{27}} = \frac{\frac{1}{3} - 27}{\frac{729 - 1}{27}} = \frac{\frac{1}{3} - 27}{\frac{728}{27}} = \frac{\frac{1}{3} - 27}{\frac{728}{27}} = \frac{\frac{1 - 81}{3}}{\frac{728}{27}} = \frac{\frac{-80}{3}}{\frac{728}{27}} = \frac{-80}{3} \times \frac{27}{728} = \frac{-80 \times 27}{3 \times 728} = \frac{-2160}{2184}.\][/tex]
Further simplification:
[tex]\[ \frac{-2160}{2184} = -0.989. \][/tex]
Next, set the derivative [tex]\( f'(x) = -\frac{1}{3} x^{-\frac{4}{3}} \)[/tex] equal to this value and solve for [tex]\( x \)[/tex]:
[tex]\[ -\frac{1}{3} x^{-\frac{4}{3}} = -0.989 \][/tex]
[tex]\[ x^{-\frac{4}{3}} = 2.967 \][/tex]
[tex]\[ x = \left( 2.967 \right)^{-\frac{3}{4}} \approx 0.461. \][/tex]
This point [tex]\( x \approx 0.461 \)[/tex] lies within [tex]\((\frac{1}{27}, 27)\)[/tex].
So, the point guaranteed to exist by the Mean Value Theorem is approximately [tex]\( c = 0.461 \)[/tex].
b. The correct choice is:
A. The point(s) guaranteed to exist is/are [tex]\( c = 0.461 \)[/tex].
1. The function must be continuous on the closed interval [tex]\([a, b]\)[/tex].
2. The function must be differentiable on the open interval [tex]\((a, b)\)[/tex].
Let's analyze [tex]\(f(x) = x^{-\frac{1}{3}}\)[/tex].
### Continuity
The function [tex]\( f(x) = x^{-\frac{1}{3}} \)[/tex] is a power function and is continuous for all [tex]\( x > 0 \)[/tex]. The interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex] is entirely positive (since [tex]\( \frac{1}{27} > 0 \)[/tex]), so [tex]\( f(x) \)[/tex] is continuous on [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex].
### Differentiability
Next, we need to check if [tex]\( f(x) \)[/tex] is differentiable on [tex]\((\frac{1}{27}, 27)\)[/tex]. The derivative of [tex]\( f(x) \)[/tex] is
[tex]\[ f'(x) = \left( x^{-\frac{1}{3}} \right)' = -\frac{1}{3} x^{-\frac{4}{3}}. \][/tex]
[tex]\( f'(x) \)[/tex] is defined for all [tex]\( x > 0 \)[/tex]. In our interval [tex]\( (\frac{1}{27}, 27) \)[/tex], all [tex]\( x \)[/tex] values are greater than [tex]\( 0 \)[/tex], so [tex]\( f(x) \)[/tex] is differentiable on [tex]\((\frac{1}{27}, 27)\)[/tex].
Since both conditions of the Mean Value Theorem are satisfied, we can say that:
### a. Determine whether the Mean Value Theorem applies to the given function on the interval [tex]\([a, b]\)[/tex].
The correct answer is:
C. Yes, because the function is continuous on the interval [tex]\(\left[\frac{1}{27}, 27\right]\)[/tex] and differentiable on the interval [tex]\(\left(\frac{1}{27}, 27\right)\)[/tex].
### b. Finding the point(s) guaranteed to exist by the Mean Value Theorem
The Mean Value Theorem states that if [tex]\( f \)[/tex] is continuous on [tex]\([a, b]\)[/tex] and differentiable on [tex]\( (a, b) \)[/tex], then there exists at least one [tex]\( c \in (a, b) \)[/tex] such that:
[tex]\[ f'(c) = \frac{f(b) - f(a)}{b - a}. \][/tex]
Let's calculate the right side for our function:
[tex]\[ f(a) = \left( \frac{1}{27} \right)^{-\frac{1}{3}} = 27, \][/tex]
[tex]\[ f(b) = 27^{-\frac{1}{3}} = \frac{1}{3}, \][/tex]
[tex]\[ b - a = 27 - \frac{1}{27}. \][/tex]
Thus,
[tex]\[ \frac{f(b) - f(a)}{b - a} = \frac{\frac{1}{3} - 27}{27 - \frac{1}{27}}. \][/tex]
Simplify this expression:
[tex]\[ \frac{\frac{1}{3} - 27}{27 - \frac{1}{27}} = \frac{\frac{1}{3} - 27}{27 - \frac{1}{27}} = \frac{\frac{1}{3} - 27}{\frac{729 - 1}{27}} = \frac{\frac{1}{3} - 27}{\frac{728}{27}} = \frac{\frac{1}{3} - 27}{\frac{728}{27}} = \frac{\frac{1 - 81}{3}}{\frac{728}{27}} = \frac{\frac{-80}{3}}{\frac{728}{27}} = \frac{-80}{3} \times \frac{27}{728} = \frac{-80 \times 27}{3 \times 728} = \frac{-2160}{2184}.\][/tex]
Further simplification:
[tex]\[ \frac{-2160}{2184} = -0.989. \][/tex]
Next, set the derivative [tex]\( f'(x) = -\frac{1}{3} x^{-\frac{4}{3}} \)[/tex] equal to this value and solve for [tex]\( x \)[/tex]:
[tex]\[ -\frac{1}{3} x^{-\frac{4}{3}} = -0.989 \][/tex]
[tex]\[ x^{-\frac{4}{3}} = 2.967 \][/tex]
[tex]\[ x = \left( 2.967 \right)^{-\frac{3}{4}} \approx 0.461. \][/tex]
This point [tex]\( x \approx 0.461 \)[/tex] lies within [tex]\((\frac{1}{27}, 27)\)[/tex].
So, the point guaranteed to exist by the Mean Value Theorem is approximately [tex]\( c = 0.461 \)[/tex].
b. The correct choice is:
A. The point(s) guaranteed to exist is/are [tex]\( c = 0.461 \)[/tex].
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is committed to providing the best answers. Thank you for visiting, and see you next time for more solutions.