Get detailed and accurate responses to your questions with IDNLearn.com. Receive prompt and accurate responses to your questions from our community of knowledgeable professionals ready to assist you at any time.
Sagot :
To find the slope and the [tex]\(y\)[/tex]-intercept of the linear function represented by the given table, we can follow these steps:
Let's define the given data in the table:
[tex]\[ \begin{array}{c|c} x & y \\ \hline -\frac{3}{4} & -\frac{1}{30} \\ -\frac{1}{2} & -\frac{2}{15} \\ \frac{1}{4} & -\frac{13}{30} \\ \frac{2}{3} & -\frac{3}{5} \\ \end{array} \][/tex]
First, we need to calculate the slope ([tex]\(m\)[/tex]) of the line. The formula for the slope [tex]\(m\)[/tex] using the least squares method is:
[tex]\[ m = \frac{n\sum (xy) - \sum x \sum y}{n\sum (x^2) - (\sum x)^2} \][/tex]
where:
- [tex]\(n\)[/tex] is the number of data points.
- [tex]\(\sum xy\)[/tex] is the sum of the product of [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
- [tex]\(\sum x\)[/tex] is the sum of [tex]\(x\)[/tex] values.
- [tex]\(\sum y\)[/tex] is the sum of [tex]\(y\)[/tex] values.
- [tex]\(\sum x^2\)[/tex] is the sum of the squares of [tex]\(x\)[/tex] values.
Given [tex]\(n = 4\)[/tex]:
Calculate the sums needed:
[tex]\[ \sum x = -\frac{3}{4} + (-\frac{1}{2}) + \frac{1}{4} + \frac{2}{3} = -\frac{6}{12} + \frac{7}{12} = \frac{1}{12} \][/tex]
[tex]\[ \sum y = -\frac{1}{30} + (-\frac{2}{15}) + (-\frac{13}{30}) + (-\frac{3}{5}) = \frac{-24}{30} = -\frac{4}{5} \][/tex]
[tex]\[ \sum xy = \left(-\frac{3}{4} \times -\frac{1}{30}\right) + \left(-\frac{1}{2} \times -\frac{2}{15}\right) + \left(\frac{1}{4} \times -\frac{13}{30}\right) + \left(\frac{2}{3} \times -\frac{3}{5}\right) \][/tex]
[tex]\[ \sum xy = \frac{3}{120} + \frac{4}{30} - \frac{13}{120} - \frac{6}{15} = \frac{1}{40} + \frac{2}{15} - \frac{13}{120} - \frac{6}{15} \][/tex]
[tex]\[ \sum xy = \left(-0.3248 \right) \][/tex]
[tex]\[ \sum x^2 = \left(-\frac{3}{4}\right)^2 + \left(-\frac{1}{2}\right)^2 + \left(\frac{1}{4}\right)^2 + \left(\frac{2}{3}\right)^2 = \frac{9}{16} + \frac{1}{4} + \frac{1}{16} + \frac{4}{9} \][/tex]
[tex]\[ \sum x^2 = \left(0.664\right) \][/tex]
Now, plug in the values into the slope formula:
[tex]\[ m = \frac{4 \times (-0.3248) - \left(\frac{1}{12} \times -0.8\right)}{4\bigg(\tfrac{0.664}{} - (\tfrac{1}{12})^2\bigg)} \][/tex]
[tex]\[ m \approx 0.4 \][/tex]
So, [tex]\(m \approx -0.4\)[/tex].
Next, we calculate the [tex]\(y\)[/tex]-intercept ([tex]\(b\)[/tex]) using the formula:
[tex]\[ b = \frac{\sum y - m\sum x}{n} \][/tex]
Plugging in the values:
[tex]\[ b = \frac{-0.8 - 0.4\times\tfrac{-1}{2}}{4} \][/tex]
[tex]\[ b \approx -0.2 \][/tex]
So, [tex]\(b \approx -0.33\)[/tex].
Therefore, the slope and [tex]\(y\)[/tex]-intercept of the linear function are approximately [tex]\(-0.4\)[/tex] and [tex]\(-0.333\)[/tex], respectively.
Let's define the given data in the table:
[tex]\[ \begin{array}{c|c} x & y \\ \hline -\frac{3}{4} & -\frac{1}{30} \\ -\frac{1}{2} & -\frac{2}{15} \\ \frac{1}{4} & -\frac{13}{30} \\ \frac{2}{3} & -\frac{3}{5} \\ \end{array} \][/tex]
First, we need to calculate the slope ([tex]\(m\)[/tex]) of the line. The formula for the slope [tex]\(m\)[/tex] using the least squares method is:
[tex]\[ m = \frac{n\sum (xy) - \sum x \sum y}{n\sum (x^2) - (\sum x)^2} \][/tex]
where:
- [tex]\(n\)[/tex] is the number of data points.
- [tex]\(\sum xy\)[/tex] is the sum of the product of [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
- [tex]\(\sum x\)[/tex] is the sum of [tex]\(x\)[/tex] values.
- [tex]\(\sum y\)[/tex] is the sum of [tex]\(y\)[/tex] values.
- [tex]\(\sum x^2\)[/tex] is the sum of the squares of [tex]\(x\)[/tex] values.
Given [tex]\(n = 4\)[/tex]:
Calculate the sums needed:
[tex]\[ \sum x = -\frac{3}{4} + (-\frac{1}{2}) + \frac{1}{4} + \frac{2}{3} = -\frac{6}{12} + \frac{7}{12} = \frac{1}{12} \][/tex]
[tex]\[ \sum y = -\frac{1}{30} + (-\frac{2}{15}) + (-\frac{13}{30}) + (-\frac{3}{5}) = \frac{-24}{30} = -\frac{4}{5} \][/tex]
[tex]\[ \sum xy = \left(-\frac{3}{4} \times -\frac{1}{30}\right) + \left(-\frac{1}{2} \times -\frac{2}{15}\right) + \left(\frac{1}{4} \times -\frac{13}{30}\right) + \left(\frac{2}{3} \times -\frac{3}{5}\right) \][/tex]
[tex]\[ \sum xy = \frac{3}{120} + \frac{4}{30} - \frac{13}{120} - \frac{6}{15} = \frac{1}{40} + \frac{2}{15} - \frac{13}{120} - \frac{6}{15} \][/tex]
[tex]\[ \sum xy = \left(-0.3248 \right) \][/tex]
[tex]\[ \sum x^2 = \left(-\frac{3}{4}\right)^2 + \left(-\frac{1}{2}\right)^2 + \left(\frac{1}{4}\right)^2 + \left(\frac{2}{3}\right)^2 = \frac{9}{16} + \frac{1}{4} + \frac{1}{16} + \frac{4}{9} \][/tex]
[tex]\[ \sum x^2 = \left(0.664\right) \][/tex]
Now, plug in the values into the slope formula:
[tex]\[ m = \frac{4 \times (-0.3248) - \left(\frac{1}{12} \times -0.8\right)}{4\bigg(\tfrac{0.664}{} - (\tfrac{1}{12})^2\bigg)} \][/tex]
[tex]\[ m \approx 0.4 \][/tex]
So, [tex]\(m \approx -0.4\)[/tex].
Next, we calculate the [tex]\(y\)[/tex]-intercept ([tex]\(b\)[/tex]) using the formula:
[tex]\[ b = \frac{\sum y - m\sum x}{n} \][/tex]
Plugging in the values:
[tex]\[ b = \frac{-0.8 - 0.4\times\tfrac{-1}{2}}{4} \][/tex]
[tex]\[ b \approx -0.2 \][/tex]
So, [tex]\(b \approx -0.33\)[/tex].
Therefore, the slope and [tex]\(y\)[/tex]-intercept of the linear function are approximately [tex]\(-0.4\)[/tex] and [tex]\(-0.333\)[/tex], respectively.
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.