Get the information you need with the help of IDNLearn.com's expert community. Join our community to receive prompt and reliable responses to your questions from knowledgeable professionals.

Match each transformation of function [tex]\( f \)[/tex] to a feature of the transformed function.

[tex]\[
\begin{array}{ll}
\text{Feature} & \text{Transformed Function} \\
\hline
\text{y-intercept at } (0,2) & h(x) = f(x) + 2 \\
\text{asymptote of } y = 2 & h(x) = f(x) + 2 \\
\text{y-intercept at } (0,4) & g(x) = 2f(x) \\
\text{function decreases as } x \text{ increases} & m(x) = -f(x) \\
\end{array}
\][/tex]

[tex]\[
\begin{array}{ll}
j(x) = f(x+2) & \\
g(x) = 2f(x) & \\
h(x) = f(x) + 2 & \\
m(x) = -f(x) & \\
\end{array}
\][/tex]


Sagot :

Sure, let's match each transformation of function [tex]\( f \)[/tex] to its relevant feature step-by-step.

1. Feature: [tex]\( y \)[/tex]-intercept at [tex]\((0, 2)\)[/tex]

- We need to find the function for which the [tex]\( y \)[/tex]-intercept is at the point [tex]\((0, 2)\)[/tex].
- The [tex]\( y \)[/tex]-intercept is found by evaluating the function at [tex]\( x = 0 \)[/tex].
- Given the function [tex]\( h(x) = f(x) + 2 \)[/tex], when [tex]\( x = 0 \)[/tex],
[tex]\[ h(0) = f(0) + 2 \][/tex]
If [tex]\( f(0) = 0 \)[/tex], then [tex]\( h(0) = 2 \)[/tex]. Thus, [tex]\( h(x) = f(x) + 2 \)[/tex] shifts the original function [tex]\( f \)[/tex] vertically up by 2 units, making the [tex]\( y \)[/tex]-intercept [tex]\( (0, 2) \)[/tex].

Therefore, [tex]\( h(x) = f(x) + 2 \)[/tex] corresponds to a [tex]\( y \)[/tex]-intercept at [tex]\((0, 2)\)[/tex].

2. Feature: Asymptote of [tex]\( y = 2 \)[/tex]

- An asymptote is a line that a function approaches as [tex]\( x \)[/tex] tends to infinity or negative infinity.
- For the function [tex]\( h(x) = f(x) + 2 \)[/tex], if [tex]\( f(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 0 \)[/tex], then [tex]\( h(x) \)[/tex] will have a horizontal asymptote at [tex]\( y = 2 \)[/tex].
- The function [tex]\( h(x) = f(x) + 2 \)[/tex] shifts the original graph of [tex]\( f(x) \)[/tex] vertically upwards by 2 units.

Thus, [tex]\( h(x) = f(x) + 2 \)[/tex] also corresponds to an asymptote of [tex]\( y = 2 \)[/tex].

3. Feature: [tex]\( y \)[/tex]-intercept at [tex]\((0, 4)\)[/tex]

- We need to find the function for which the [tex]\( y \)[/tex]-intercept is at the point [tex]\((0, 4)\)[/tex].
- For the function [tex]\( g(x) = 2f(x) \)[/tex], evaluate it at [tex]\( x = 0 \)[/tex],
[tex]\[ g(0) = 2f(0) \][/tex]
If [tex]\( f(0) = 2 \)[/tex], then [tex]\( g(0) = 4 \)[/tex]. Thus, [tex]\( g(x) = 2f(x) \)[/tex] scales the output of the function [tex]\( f \)[/tex] by a factor of 2, making the [tex]\( y \)[/tex]-intercept [tex]\( (0, 4) \)[/tex].

Therefore, [tex]\( g(x) = 2f(x) \)[/tex] corresponds to a [tex]\( y \)[/tex]-intercept at [tex]\((0, 4)\)[/tex].

4. Feature: Function decreases as [tex]\( x \)[/tex] increases

- We need to identify the function that results in the original function [tex]\( f(x) \)[/tex] decreasing as [tex]\( x \)[/tex] increases.
- For the function [tex]\( m(x) = -f(x) \)[/tex], if [tex]\( f(x) \)[/tex] is increasing, [tex]\( -f(x) \)[/tex] will be decreasing, because negating the function inverses its slope.
[tex]\[ \text{If } f(x) \text{ increases with respect to } x, \text{then } -f(x) \text{ decreases with respect to } x. \][/tex]

Therefore, [tex]\( m(x) = -f(x) \)[/tex] corresponds to the feature where the function decreases as [tex]\( x \)[/tex] increases.

Summarizing:

- [tex]\( y \)[/tex]-intercept at [tex]\((0, 2)\)[/tex] matches with [tex]\( h(x) = f(x) + 2 \)[/tex]
- Asymptote of [tex]\( y = 2 \)[/tex] matches with [tex]\( h(x) = f(x) + 2 \)[/tex]
- [tex]\( y \)[/tex]-intercept at [tex]\((0, 4)\)[/tex] matches with [tex]\( g(x) = 2f(x) \)[/tex]
- Function decreases as [tex]\( x \)[/tex] increases matches with [tex]\( m(x) = -f(x) \)[/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.