IDNLearn.com: Your reliable source for finding precise answers. Our Q&A platform is designed to provide quick and accurate answers to any questions you may have.

The table shows the mass and acceleration due to gravity for several planets in the solar system. If air resistance is ignored, on which planet would a space probe with a mass of 250 kg have the highest speed after falling 50 m?

\begin{tabular}{|l|l|l|}
\hline
Planet & Mass, [tex]$10^{24}~kg$[/tex] & \begin{tabular}{l}
Acceleration due to gravity, \\
[tex]$m/s^2$[/tex]
\end{tabular} \\
\hline
Venus & 4.87 & 8.9 \\
\hline
Earth & 5.97 & 9.8 \\
\hline
Uranus & 86.8 & 8.7 \\
\hline
Neptune & 102 & 11 \\
\hline
Saturn & 568 & 9 \\
\hline
\end{tabular}

A. Venus
B. Uranus
C. Saturn
D. Neptune


Sagot :

To determine which planet allows the space probe to achieve the highest speed after falling 50 meters, we will use the kinematic equation for velocity under constant acceleration:

[tex]\[ v^2 = u^2 + 2as \][/tex]

Here,
- [tex]\( v \)[/tex] is the final velocity,
- [tex]\( u \)[/tex] is the initial velocity (which is 0 in this case since the probe starts from rest),
- [tex]\( a \)[/tex] is the acceleration due to gravity on the respective planet,
- [tex]\( s \)[/tex] is the distance fallen (50 meters).

Given that [tex]\( u = 0 \)[/tex], the equation simplifies to:

[tex]\[ v^2 = 2as \][/tex]

Thus,

[tex]\[ v = \sqrt{2as} \][/tex]

We will use the given gravitational accelerations for each planet to find the final velocities:

1. Venus:
- Acceleration due to gravity, [tex]\( a = 8.9 \, m/s^2 \)[/tex]
- Distance fallen, [tex]\( s = 50 \, m \)[/tex]
[tex]\[ v = \sqrt{2 \cdot 8.9 \cdot 50} \][/tex]
[tex]\[ v \approx 29.83 \, m/s \][/tex]

2. Earth:
- Acceleration due to gravity, [tex]\( a = 9.8 \, m/s^2 \)[/tex]
- Distance fallen, [tex]\( s = 50 \, m \)[/tex]
[tex]\[ v = \sqrt{2 \cdot 9.8 \cdot 50} \][/tex]
[tex]\[ v \approx 31.30 \, m/s \][/tex]

3. Uranus:
- Acceleration due to gravity, [tex]\( a = 8.7 \, m/s^2 \)[/tex]
- Distance fallen, [tex]\( s = 50 \, m \)[/tex]
[tex]\[ v = \sqrt{2 \cdot 8.7 \cdot 50} \][/tex]
[tex]\[ v \approx 29.50 \, m/s \][/tex]

4. Neptune:
- Acceleration due to gravity, [tex]\( a = 11.0 \, m/s^2 \)[/tex]
- Distance fallen, [tex]\( s = 50 \, m \)[/tex]
[tex]\[ v = \sqrt{2 \cdot 11.0 \cdot 50} \][/tex]
[tex]\[ v \approx 33.17 \, m/s \][/tex]

5. Saturn:
- Acceleration due to gravity, [tex]\( a = 9.0 \, m/s^2 \)[/tex]
- Distance fallen, [tex]\( s = 50 \, m \)[/tex]
[tex]\[ v = \sqrt{2 \cdot 9.0 \cdot 50} \][/tex]
[tex]\[ v \approx 30.00 \, m/s \][/tex]

By comparing the final velocities, we see that the highest final velocity is achieved on Neptune, at approximately [tex]\( 33.17 \, m/s \)[/tex].

Therefore, the correct answer is:

D. Neptune