Discover new perspectives and gain insights with IDNLearn.com. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.
Sagot :
To determine the orbital period of Neptune, we can use Kepler's third law, which relates the orbital period of a planet to its semi-major axis (the distance from the Sun in this context):
[tex]\[ T^2 = \frac{4\pi^2 r^3}{GM_{\text{sun}}} \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of the planet,
- [tex]\( r \)[/tex] is the average distance from the planet to the Sun (in meters),
- [tex]\( G \)[/tex] is the gravitational constant [tex]\((6.67430 \times 10^{-11} \, m^3 kg^{-1} s^{-2})\)[/tex],
- [tex]\( M_{\text{sun}} \)[/tex] is the mass of the Sun [tex]\((2 \times 10^{30} \, kg)\)[/tex].
Firstly, we need to convert the distance from Astronomical Units (AU) to meters:
[tex]\[ 1 \, \text{AU} = 1.496 \times 10^{11} \, \text{m} \][/tex]
[tex]\[ \text{distance}_{\text{Neptune-Sun}} = 30 \, \text{AU} \times 1.496 \times 10^{11} \, \text{m/AU} = 4.488 \times 10^{12} \, \text{m} \][/tex]
Next, we plug in the values into Kepler's third law to find [tex]\( T \)[/tex]:
[tex]\[ T^2 = \frac{4 \pi^2 (4.488 \times 10^{12} \, \text{m})^3}{(6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})(2 \times 10^{30} \,\text{kg})} \][/tex]
Calculating the numerator:
[tex]\[ 4 \pi^2 (4.488 \times 10^{12} \, \text{m})^3 \approx 2.67077 \times 10^{38} \, \text{m}^3 \][/tex]
Calculating the denominator:
[tex]\[ (6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})(2 \times 10^{30} \, \text{kg}) = 1.33486 \times 10^{20} \, \text{m}^3 \text{s}^{-2} \][/tex]
Combining these:
[tex]\[ T^2 = \frac{2.67077 \times 10^{38}}{1.33486 \times 10^{20}} \approx 2.6735 \times 10^{19} \][/tex]
[tex]\[ T \approx \sqrt{2.6735 \times 10^{19}} \approx 5.1706 \times 10^{9} \, \text{s} \][/tex]
Finally, we convert the orbital period from seconds to Earth years:
[tex]\[ 1 \, \text{year} = 365.25 \, \text{days} \times 24 \, \text{hours/day} \times 60 \, \text{minutes/hour} \times 60 \, \text{seconds/minute} = 3.15576 \times 10^{7} \, \text{s/year} \][/tex]
[tex]\[ T_{\text{years}} = \frac{5.1706 \times 10^{9} \, \text{s}}{3.15576 \times 10^{7} \, \text{s/year}} \approx 163.85 \, \text{years} \][/tex]
Therefore, the orbital period of Neptune is approximately:
[tex]\[ 164 \, \text{Earth years} \][/tex]
So the correct answer is:
[tex]\[ \boxed{164 \, \text{Earth years}} \][/tex]
[tex]\[ T^2 = \frac{4\pi^2 r^3}{GM_{\text{sun}}} \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of the planet,
- [tex]\( r \)[/tex] is the average distance from the planet to the Sun (in meters),
- [tex]\( G \)[/tex] is the gravitational constant [tex]\((6.67430 \times 10^{-11} \, m^3 kg^{-1} s^{-2})\)[/tex],
- [tex]\( M_{\text{sun}} \)[/tex] is the mass of the Sun [tex]\((2 \times 10^{30} \, kg)\)[/tex].
Firstly, we need to convert the distance from Astronomical Units (AU) to meters:
[tex]\[ 1 \, \text{AU} = 1.496 \times 10^{11} \, \text{m} \][/tex]
[tex]\[ \text{distance}_{\text{Neptune-Sun}} = 30 \, \text{AU} \times 1.496 \times 10^{11} \, \text{m/AU} = 4.488 \times 10^{12} \, \text{m} \][/tex]
Next, we plug in the values into Kepler's third law to find [tex]\( T \)[/tex]:
[tex]\[ T^2 = \frac{4 \pi^2 (4.488 \times 10^{12} \, \text{m})^3}{(6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})(2 \times 10^{30} \,\text{kg})} \][/tex]
Calculating the numerator:
[tex]\[ 4 \pi^2 (4.488 \times 10^{12} \, \text{m})^3 \approx 2.67077 \times 10^{38} \, \text{m}^3 \][/tex]
Calculating the denominator:
[tex]\[ (6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})(2 \times 10^{30} \, \text{kg}) = 1.33486 \times 10^{20} \, \text{m}^3 \text{s}^{-2} \][/tex]
Combining these:
[tex]\[ T^2 = \frac{2.67077 \times 10^{38}}{1.33486 \times 10^{20}} \approx 2.6735 \times 10^{19} \][/tex]
[tex]\[ T \approx \sqrt{2.6735 \times 10^{19}} \approx 5.1706 \times 10^{9} \, \text{s} \][/tex]
Finally, we convert the orbital period from seconds to Earth years:
[tex]\[ 1 \, \text{year} = 365.25 \, \text{days} \times 24 \, \text{hours/day} \times 60 \, \text{minutes/hour} \times 60 \, \text{seconds/minute} = 3.15576 \times 10^{7} \, \text{s/year} \][/tex]
[tex]\[ T_{\text{years}} = \frac{5.1706 \times 10^{9} \, \text{s}}{3.15576 \times 10^{7} \, \text{s/year}} \approx 163.85 \, \text{years} \][/tex]
Therefore, the orbital period of Neptune is approximately:
[tex]\[ 164 \, \text{Earth years} \][/tex]
So the correct answer is:
[tex]\[ \boxed{164 \, \text{Earth years}} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.