Expand your knowledge base with the help of IDNLearn.com's extensive answer archive. Discover prompt and accurate responses from our experts, ensuring you get the information you need quickly.

For the following function [tex]\( f \)[/tex], find the antiderivative [tex]\( F \)[/tex] that satisfies the given condition.

[tex]\[
\begin{array}{l}
f(v) = \frac{3}{4} \sec v \tan v, \quad F(0) = 3, \quad -\frac{\pi}{2} \ \textless \ v \ \textless \ \frac{\pi}{2} \\
F(v) = \square
\end{array}
\][/tex]


Sagot :

Sure, let's go through the steps to find the antiderivative [tex]\( F(v) \)[/tex] of the function [tex]\( f(v) = \frac{3}{4} \sec(v) \tan(v) \)[/tex] that satisfies the condition [tex]\( F(0) = 3 \)[/tex].

### Step 1: Find the Antiderivative

First, we need to find the indefinite integral of the function [tex]\( f(v) \)[/tex]:
[tex]\[ \int \frac{3}{4} \sec(v) \tan(v) \, dv \][/tex]

We know that the derivative of [tex]\( \sec(v) \)[/tex] is [tex]\( \sec(v) \tan(v) \)[/tex], so integrating [tex]\( \sec(v) \tan(v) \)[/tex] gives [tex]\( \sec(v) \)[/tex]. Thus:

[tex]\[ \int \sec(v) \tan(v) \, dv = \sec(v) \][/tex]

Considering the constant multiplier [tex]\(\frac{3}{4}\)[/tex], the integral becomes:
[tex]\[ \int \frac{3}{4} \sec(v) \tan(v) \, dv = \frac{3}{4} \sec(v) \][/tex]

Thus, the antiderivative [tex]\( F(v) \)[/tex] can be written as:
[tex]\[ F(v) = \frac{3}{4} \sec(v) + C \][/tex]

### Step 2: Determine the Constant of Integration

To determine the constant [tex]\( C \)[/tex], we use the condition [tex]\( F(0) = 3 \)[/tex]:
[tex]\[ F(0) = \frac{3}{4} \sec(0) + C = 3 \][/tex]

We know that [tex]\( \sec(0) = 1 \)[/tex], so:
[tex]\[ \frac{3}{4} \cdot 1 + C = 3 \][/tex]

This simplifies to:
[tex]\[ \frac{3}{4} + C = 3 \][/tex]

Subtract [tex]\(\frac{3}{4}\)[/tex] from both sides to solve for [tex]\( C \)[/tex]:
[tex]\[ C = 3 - \frac{3}{4} = \frac{12}{4} - \frac{3}{4} = \frac{9}{4} = 2.25 \][/tex]

### Step 3: Write the Final Antiderivative

Now that we have determined [tex]\( C = 2.25 \)[/tex], we can write the final expression for the antiderivative [tex]\( F(v) \)[/tex]:
[tex]\[ F(v) = \frac{3}{4} \sec(v) + 2.25 \][/tex]

Thus, the antiderivative [tex]\( F \)[/tex] that satisfies the given condition is:
[tex]\[ F(v) = 2.25 + \frac{3}{4} \sec(v) \][/tex]

So we fill in the blank:
[tex]\[ F(v) = \boxed{2.25 + \frac{3}{4} \sec(v)} \][/tex]