From beginner to expert, IDNLearn.com has answers for everyone. Find the answers you need quickly and accurately with help from our knowledgeable and dedicated community members.
Sagot :
Sure! Let's determine the solution for the system of linear equations:
[tex]\[ \begin{aligned} &x_1 + 2x_2 = 11 \\ &3x_1 + 4x_2 = 25 \end{aligned} \][/tex]
First, we write this system in the matrix form [tex]\(\mathbf{A}\mathbf{x} = \mathbf{b}\)[/tex], where:
[tex]\[ \mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ \end{pmatrix} , \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} , \quad \mathbf{b} = \begin{pmatrix} 11 \\ 25 \\ \end{pmatrix} \][/tex]
Now, we need to solve for [tex]\(\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} \)[/tex].
Given the matrix equation:
[tex]\[ \mathbf{A}\mathbf{x} = \mathbf{b} \][/tex]
we see that:
[tex]\[ \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} = \begin{pmatrix} 11 \\ 25 \\ \end{pmatrix} \][/tex]
To find [tex]\(\mathbf{x}\)[/tex], we use the inverse of [tex]\(\mathbf{A}\)[/tex] (if it exists). The solution can be found by:
[tex]\[ \mathbf{x} = \mathbf{A}^{-1}\mathbf{b} \][/tex]
Given the computations or solving by substitution/elimination, we determine the solutions for [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex]. The solution provided is:
[tex]\[ x_1 = 3, \quad x_2 = 4 \][/tex]
So, the detailed solutions to the system of linear equations:
[tex]\[ \begin{aligned} x_1 + 2x_2 &= 11 \\ 3x_1 + 4x_2 &= 25 \end{aligned} \][/tex]
are [tex]\( x_1 \approx 2.9999999999999987 \)[/tex] and [tex]\( x_2 \approx 4.000000000000001 \)[/tex].
[tex]\[ \begin{aligned} &x_1 + 2x_2 = 11 \\ &3x_1 + 4x_2 = 25 \end{aligned} \][/tex]
First, we write this system in the matrix form [tex]\(\mathbf{A}\mathbf{x} = \mathbf{b}\)[/tex], where:
[tex]\[ \mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ \end{pmatrix} , \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} , \quad \mathbf{b} = \begin{pmatrix} 11 \\ 25 \\ \end{pmatrix} \][/tex]
Now, we need to solve for [tex]\(\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} \)[/tex].
Given the matrix equation:
[tex]\[ \mathbf{A}\mathbf{x} = \mathbf{b} \][/tex]
we see that:
[tex]\[ \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} = \begin{pmatrix} 11 \\ 25 \\ \end{pmatrix} \][/tex]
To find [tex]\(\mathbf{x}\)[/tex], we use the inverse of [tex]\(\mathbf{A}\)[/tex] (if it exists). The solution can be found by:
[tex]\[ \mathbf{x} = \mathbf{A}^{-1}\mathbf{b} \][/tex]
Given the computations or solving by substitution/elimination, we determine the solutions for [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex]. The solution provided is:
[tex]\[ x_1 = 3, \quad x_2 = 4 \][/tex]
So, the detailed solutions to the system of linear equations:
[tex]\[ \begin{aligned} x_1 + 2x_2 &= 11 \\ 3x_1 + 4x_2 &= 25 \end{aligned} \][/tex]
are [tex]\( x_1 \approx 2.9999999999999987 \)[/tex] and [tex]\( x_2 \approx 4.000000000000001 \)[/tex].
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.