Explore a wide range of topics and get answers from experts on IDNLearn.com. Discover detailed answers to your questions with our extensive database of expert knowledge.
Sagot :
To determine the change in kinetic energy of a proton when it is accelerated through a potential difference of 2 megavolts (MV), we can use the basic physics equation for kinetic energy change due to electric potential difference:
[tex]\[ \Delta KE = q \times V \][/tex]
where:
- [tex]\(\Delta KE\)[/tex] is the change in kinetic energy,
- [tex]\(q\)[/tex] is the charge of the proton,
- [tex]\(V\)[/tex] is the potential difference.
Given:
- The charge of a proton ([tex]\(q\)[/tex]) is [tex]\(1.6 \times 10^{-19}\)[/tex] Coulombs.
- The potential difference ([tex]\(V\)[/tex]) is [tex]\(2 \times 10^{6}\)[/tex] volts (2 MV).
Let's plug these values into the equation:
[tex]\[ \Delta KE = (1.6 \times 10^{-19} \, \text{C}) \times (2 \times 10^{6} \, \text{V}) \][/tex]
First, multiply the numerical parts:
[tex]\[ 1.6 \times 2 = 3.2 \][/tex]
Next, combine the powers of 10:
[tex]\[ 10^{-19} \times 10^{6} = 10^{-19 + 6} = 10^{-13} \][/tex]
So, the change in kinetic energy is:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{Joules} \][/tex]
To convert this energy into nanojoules (nJ), we use the conversion factor [tex]\(1 \, \text{Joule} = 10^{9} \, \text{nanojoules}\)[/tex]:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{J} \times 10^{9} \, \left(\frac{\text{nJ}}{\text{J}}\right) = 3.2 \times 10^{-13 + 9} \, \text{nJ} = 3.2 \times 10^{-4} \, \text{nJ} = 0.00032 \, \text{nJ} \][/tex]
Therefore, the change in kinetic energy of the proton, when accelerated through a potential difference of 2 MV, is:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{J} \][/tex]
or equivalently,
[tex]\[ \Delta KE = 0.00032 \, \text{nJ} \][/tex]
Hence, when considering the decimal notation, the correct numerical result in nanojoules (nJ) is:
[tex]\[ \boxed{0.00032 \, \text{nJ}} \][/tex]
[tex]\[ \Delta KE = q \times V \][/tex]
where:
- [tex]\(\Delta KE\)[/tex] is the change in kinetic energy,
- [tex]\(q\)[/tex] is the charge of the proton,
- [tex]\(V\)[/tex] is the potential difference.
Given:
- The charge of a proton ([tex]\(q\)[/tex]) is [tex]\(1.6 \times 10^{-19}\)[/tex] Coulombs.
- The potential difference ([tex]\(V\)[/tex]) is [tex]\(2 \times 10^{6}\)[/tex] volts (2 MV).
Let's plug these values into the equation:
[tex]\[ \Delta KE = (1.6 \times 10^{-19} \, \text{C}) \times (2 \times 10^{6} \, \text{V}) \][/tex]
First, multiply the numerical parts:
[tex]\[ 1.6 \times 2 = 3.2 \][/tex]
Next, combine the powers of 10:
[tex]\[ 10^{-19} \times 10^{6} = 10^{-19 + 6} = 10^{-13} \][/tex]
So, the change in kinetic energy is:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{Joules} \][/tex]
To convert this energy into nanojoules (nJ), we use the conversion factor [tex]\(1 \, \text{Joule} = 10^{9} \, \text{nanojoules}\)[/tex]:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{J} \times 10^{9} \, \left(\frac{\text{nJ}}{\text{J}}\right) = 3.2 \times 10^{-13 + 9} \, \text{nJ} = 3.2 \times 10^{-4} \, \text{nJ} = 0.00032 \, \text{nJ} \][/tex]
Therefore, the change in kinetic energy of the proton, when accelerated through a potential difference of 2 MV, is:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{J} \][/tex]
or equivalently,
[tex]\[ \Delta KE = 0.00032 \, \text{nJ} \][/tex]
Hence, when considering the decimal notation, the correct numerical result in nanojoules (nJ) is:
[tex]\[ \boxed{0.00032 \, \text{nJ}} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.