IDNLearn.com connects you with experts who provide accurate and reliable answers. Whether it's a simple query or a complex problem, our experts have the answers you need.
Sagot :
Alright, let's go through the geometric probability distribution problem step-by-step.
### (a) Probability [tex]\( P(3) \)[/tex]
Given:
- [tex]\( p = 0.524 \)[/tex] (Shaquille O'Neal's success rate)
- [tex]\( x = 3 \)[/tex] (we want the probability he makes his third attempt after missing two)
The probability [tex]\( P(x) \)[/tex] for a geometric distribution is given by:
[tex]\[ P(x) = p (1 - p)^{x-1} \][/tex]
So, for [tex]\( x = 3 \)[/tex]:
[tex]\[ P(3) = 0.524 \times (1 - 0.524)^{3-1} \][/tex]
From the result obtained:
[tex]\[ P(3) = 0.118725824 \][/tex]
### (b) Probability Distribution for [tex]\( x = 1, 2, \ldots, 10 \)[/tex]
We need to construct a probability distribution for [tex]\( x = 1 \)[/tex] to [tex]\( x = 10 \)[/tex]. The probability distribution [tex]\( P(x) \)[/tex] is:
1. For [tex]\( x = 1 \)[/tex]:
[tex]\[ P(1) = 0.524 \][/tex]
2. For [tex]\( x = 2 \)[/tex]:
[tex]\[ P(2) = 0.524 \times (1 - 0.524)^1 = 0.249424 \][/tex]
3. For [tex]\( x = 3 \)[/tex]:
[tex]\[ P(3) = 0.524 \times (1 - 0.524)^2 = 0.118725824 \][/tex]
4. For [tex]\( x = 4 \)[/tex]:
[tex]\[ P(4) = 0.524 \times (1 - 0.524)^3 = 0.056513492224 \][/tex]
5. For [tex]\( x = 5 \)[/tex]:
[tex]\[ P(5) = 0.524 \times (1 - 0.524)^4 = 0.026900422298624 \][/tex]
6. For [tex]\( x = 6 \)[/tex]:
[tex]\[ P(6) = 0.524 \times (1 - 0.524)^5 = 0.012804601014145 \][/tex]
7. For [tex]\( x = 7 \)[/tex]:
[tex]\[ P(7) = 0.524 \times (1 - 0.524)^6 = 0.006094990082733 \][/tex]
8. For [tex]\( x = 8 \)[/tex]:
[tex]\[ P(8) = 0.524 \times (1 - 0.524)^7 = 0.002901215279381 \][/tex]
9. For [tex]\( x = 9 \)[/tex]:
[tex]\[ P(9) = 0.524 \times (1 - 0.524)^8 = 0.001380978472985 \][/tex]
10. For [tex]\( x = 10 \)[/tex]:
[tex]\[ P(10) = 0.524 \times (1 - 0.524)^9 = 0.000657345753141 \][/tex]
Thus, the probability distribution is:
[tex]\[ [0.524, 0.249424, 0.118725824, 0.056513492224, 0.026900422298624, 0.012804601014145, 0.006094990082733, 0.002901215279381, 0.001380978472985, 0.000657345753141] \][/tex]
### (c) Mean of the Distribution
The mean [tex]\( \mu \)[/tex] of a geometric distribution is given by:
[tex]\[ \mu = \frac{1}{p} \][/tex]
Using [tex]\( p = 0.524 \)[/tex]:
[tex]\[ \mu = \frac{1}{0.524} \][/tex]
From the result obtained:
[tex]\[ \mu = 1.9083969465648853 \][/tex]
### (d) Comparison of the Mean with [tex]\( \frac{1}{p} \)[/tex]
We have already computed the mean as [tex]\( \frac{1}{p} = 1.9083969465648853 \)[/tex].
So, the mean calculated in part (c) [tex]\( \mu = 1.9083969465648853 \)[/tex] is indeed equal to [tex]\( \frac{1}{p} \)[/tex]. This confirms that the mean of a geometric distribution is [tex]\( \frac{1}{p} \)[/tex].
In conclusion, the expected number of free throw attempts Shaquille O'Neal would make before observing a successful free throw is approximately 1.908.
### (a) Probability [tex]\( P(3) \)[/tex]
Given:
- [tex]\( p = 0.524 \)[/tex] (Shaquille O'Neal's success rate)
- [tex]\( x = 3 \)[/tex] (we want the probability he makes his third attempt after missing two)
The probability [tex]\( P(x) \)[/tex] for a geometric distribution is given by:
[tex]\[ P(x) = p (1 - p)^{x-1} \][/tex]
So, for [tex]\( x = 3 \)[/tex]:
[tex]\[ P(3) = 0.524 \times (1 - 0.524)^{3-1} \][/tex]
From the result obtained:
[tex]\[ P(3) = 0.118725824 \][/tex]
### (b) Probability Distribution for [tex]\( x = 1, 2, \ldots, 10 \)[/tex]
We need to construct a probability distribution for [tex]\( x = 1 \)[/tex] to [tex]\( x = 10 \)[/tex]. The probability distribution [tex]\( P(x) \)[/tex] is:
1. For [tex]\( x = 1 \)[/tex]:
[tex]\[ P(1) = 0.524 \][/tex]
2. For [tex]\( x = 2 \)[/tex]:
[tex]\[ P(2) = 0.524 \times (1 - 0.524)^1 = 0.249424 \][/tex]
3. For [tex]\( x = 3 \)[/tex]:
[tex]\[ P(3) = 0.524 \times (1 - 0.524)^2 = 0.118725824 \][/tex]
4. For [tex]\( x = 4 \)[/tex]:
[tex]\[ P(4) = 0.524 \times (1 - 0.524)^3 = 0.056513492224 \][/tex]
5. For [tex]\( x = 5 \)[/tex]:
[tex]\[ P(5) = 0.524 \times (1 - 0.524)^4 = 0.026900422298624 \][/tex]
6. For [tex]\( x = 6 \)[/tex]:
[tex]\[ P(6) = 0.524 \times (1 - 0.524)^5 = 0.012804601014145 \][/tex]
7. For [tex]\( x = 7 \)[/tex]:
[tex]\[ P(7) = 0.524 \times (1 - 0.524)^6 = 0.006094990082733 \][/tex]
8. For [tex]\( x = 8 \)[/tex]:
[tex]\[ P(8) = 0.524 \times (1 - 0.524)^7 = 0.002901215279381 \][/tex]
9. For [tex]\( x = 9 \)[/tex]:
[tex]\[ P(9) = 0.524 \times (1 - 0.524)^8 = 0.001380978472985 \][/tex]
10. For [tex]\( x = 10 \)[/tex]:
[tex]\[ P(10) = 0.524 \times (1 - 0.524)^9 = 0.000657345753141 \][/tex]
Thus, the probability distribution is:
[tex]\[ [0.524, 0.249424, 0.118725824, 0.056513492224, 0.026900422298624, 0.012804601014145, 0.006094990082733, 0.002901215279381, 0.001380978472985, 0.000657345753141] \][/tex]
### (c) Mean of the Distribution
The mean [tex]\( \mu \)[/tex] of a geometric distribution is given by:
[tex]\[ \mu = \frac{1}{p} \][/tex]
Using [tex]\( p = 0.524 \)[/tex]:
[tex]\[ \mu = \frac{1}{0.524} \][/tex]
From the result obtained:
[tex]\[ \mu = 1.9083969465648853 \][/tex]
### (d) Comparison of the Mean with [tex]\( \frac{1}{p} \)[/tex]
We have already computed the mean as [tex]\( \frac{1}{p} = 1.9083969465648853 \)[/tex].
So, the mean calculated in part (c) [tex]\( \mu = 1.9083969465648853 \)[/tex] is indeed equal to [tex]\( \frac{1}{p} \)[/tex]. This confirms that the mean of a geometric distribution is [tex]\( \frac{1}{p} \)[/tex].
In conclusion, the expected number of free throw attempts Shaquille O'Neal would make before observing a successful free throw is approximately 1.908.
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.