Join the IDNLearn.com community and start getting the answers you need today. Get the information you need quickly and accurately with our reliable and thorough Q&A platform.
Sagot :
Let's solve the problem step by step.
First, we are given the complex numbers [tex]\( w \)[/tex] and [tex]\( z \)[/tex] in polar form:
[tex]\[ w = \sqrt{2}\left(\cos \left(\frac{\pi}{4}\right) + i \sin \left(\frac{\pi}{4}\right)\right) \][/tex]
[tex]\[ z = 2\left(\cos \left(\frac{\pi}{2}\right) + i \sin \left(\frac{\pi}{2}\right)\right) \][/tex]
To perform the subtraction [tex]\( w - z \)[/tex], we need to convert these numbers to rectangular form.
1. Converting [tex]\( w \)[/tex] to rectangular form:
- Magnitude [tex]\( w_r = \sqrt{2} \)[/tex]
- Angle [tex]\( w_\theta = \frac{\pi}{4} \)[/tex]
Using the rectangular form formula:
[tex]\[ w_{\text{re}} = w_r \cos(w_\theta) = \sqrt{2} \cos\left(\frac{\pi}{4}\right) \][/tex]
[tex]\[ w_{\text{im}} = w_r \sin(w_\theta) = \sqrt{2} \sin\left(\frac{\pi}{4}\right) \][/tex]
We know:
[tex]\[ \cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \][/tex]
Therefore:
[tex]\[ w_{\text{re}} = \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1 \][/tex]
[tex]\[ w_{\text{im}} = \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1 \][/tex]
2. Converting [tex]\( z \)[/tex] to rectangular form:
- Magnitude [tex]\( z_r = 2 \)[/tex]
- Angle [tex]\( z_\theta = \frac{\pi}{2} \)[/tex]
Using the rectangular form formula:
[tex]\[ z_{\text{re}} = z_r \cos(z_\theta) = 2 \cos\left(\frac{\pi}{2}\right) \][/tex]
[tex]\[ z_{\text{im}} = z_r \sin(z_\theta) = 2 \sin\left(\frac{\pi}{2}\right) \][/tex]
We know:
[tex]\[ \cos\left(\frac{\pi}{2}\right) = 0 \][/tex]
[tex]\[ \sin\left(\frac{\pi}{2}\right) = 1 \][/tex]
Therefore:
[tex]\[ z_{\text{re}} = 2 \cdot 0 = 0 \][/tex]
[tex]\[ z_{\text{im}} = 2 \cdot 1 = 2 \][/tex]
3. Subtracting [tex]\( w \)[/tex] and [tex]\( z \)[/tex] in rectangular form:
[tex]\[ w - z = (w_{\text{re}} + i w_{\text{im}}) - (z_{\text{re}} + i z_{\text{im}}) \][/tex]
[tex]\[ w - z = (1 + i \cdot 1) - (0 + i \cdot 2) \][/tex]
[tex]\[ w - z = (1 - 0) + i(1 - 2) \][/tex]
[tex]\[ w - z = 1 - i \][/tex]
4. Converting the result back to polar form:
- The magnitude [tex]\( r \)[/tex] is given by:
[tex]\[ r = \sqrt{(\text{Re})^2 + (\text{Im})^2} \][/tex]
[tex]\[ r = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \][/tex]
- The angle [tex]\( \theta \)[/tex] is given by:
[tex]\[ \theta = \tan^{-2}\left(\frac{\text{Im}}{\text{Re}}\right) = \tan^{-1}\left(\frac{-1}{1}\right) = \tan^{-1}(-1) \][/tex]
We know:
[tex]\[ \tan^{-1}(-1) = -\frac{\pi}{4} \][/tex]
To bring the angle within the standard range of [tex]\( [0, 2\pi) \)[/tex], we add [tex]\( 2\pi \)[/tex]:
[tex]\[ \theta = -\frac{\pi}{4} + 2\pi = \frac{7\pi}{4} \][/tex]
So, [tex]\( w - z \)[/tex] expressed in polar form is:
[tex]\[ w - z = \sqrt{2}\left(\cos\left(\frac{7\pi}{4}\right) + i \sin\left(\frac{7\pi}{4}\right)\right) \][/tex]
Therefore, the correct option is:
[tex]\[ \sqrt{2}\left(\cos \left(\frac{7 \pi}{4}\right)+i \sin \left(\frac{7 \pi}{4}\right)\right) \][/tex]
First, we are given the complex numbers [tex]\( w \)[/tex] and [tex]\( z \)[/tex] in polar form:
[tex]\[ w = \sqrt{2}\left(\cos \left(\frac{\pi}{4}\right) + i \sin \left(\frac{\pi}{4}\right)\right) \][/tex]
[tex]\[ z = 2\left(\cos \left(\frac{\pi}{2}\right) + i \sin \left(\frac{\pi}{2}\right)\right) \][/tex]
To perform the subtraction [tex]\( w - z \)[/tex], we need to convert these numbers to rectangular form.
1. Converting [tex]\( w \)[/tex] to rectangular form:
- Magnitude [tex]\( w_r = \sqrt{2} \)[/tex]
- Angle [tex]\( w_\theta = \frac{\pi}{4} \)[/tex]
Using the rectangular form formula:
[tex]\[ w_{\text{re}} = w_r \cos(w_\theta) = \sqrt{2} \cos\left(\frac{\pi}{4}\right) \][/tex]
[tex]\[ w_{\text{im}} = w_r \sin(w_\theta) = \sqrt{2} \sin\left(\frac{\pi}{4}\right) \][/tex]
We know:
[tex]\[ \cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \][/tex]
Therefore:
[tex]\[ w_{\text{re}} = \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1 \][/tex]
[tex]\[ w_{\text{im}} = \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1 \][/tex]
2. Converting [tex]\( z \)[/tex] to rectangular form:
- Magnitude [tex]\( z_r = 2 \)[/tex]
- Angle [tex]\( z_\theta = \frac{\pi}{2} \)[/tex]
Using the rectangular form formula:
[tex]\[ z_{\text{re}} = z_r \cos(z_\theta) = 2 \cos\left(\frac{\pi}{2}\right) \][/tex]
[tex]\[ z_{\text{im}} = z_r \sin(z_\theta) = 2 \sin\left(\frac{\pi}{2}\right) \][/tex]
We know:
[tex]\[ \cos\left(\frac{\pi}{2}\right) = 0 \][/tex]
[tex]\[ \sin\left(\frac{\pi}{2}\right) = 1 \][/tex]
Therefore:
[tex]\[ z_{\text{re}} = 2 \cdot 0 = 0 \][/tex]
[tex]\[ z_{\text{im}} = 2 \cdot 1 = 2 \][/tex]
3. Subtracting [tex]\( w \)[/tex] and [tex]\( z \)[/tex] in rectangular form:
[tex]\[ w - z = (w_{\text{re}} + i w_{\text{im}}) - (z_{\text{re}} + i z_{\text{im}}) \][/tex]
[tex]\[ w - z = (1 + i \cdot 1) - (0 + i \cdot 2) \][/tex]
[tex]\[ w - z = (1 - 0) + i(1 - 2) \][/tex]
[tex]\[ w - z = 1 - i \][/tex]
4. Converting the result back to polar form:
- The magnitude [tex]\( r \)[/tex] is given by:
[tex]\[ r = \sqrt{(\text{Re})^2 + (\text{Im})^2} \][/tex]
[tex]\[ r = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \][/tex]
- The angle [tex]\( \theta \)[/tex] is given by:
[tex]\[ \theta = \tan^{-2}\left(\frac{\text{Im}}{\text{Re}}\right) = \tan^{-1}\left(\frac{-1}{1}\right) = \tan^{-1}(-1) \][/tex]
We know:
[tex]\[ \tan^{-1}(-1) = -\frac{\pi}{4} \][/tex]
To bring the angle within the standard range of [tex]\( [0, 2\pi) \)[/tex], we add [tex]\( 2\pi \)[/tex]:
[tex]\[ \theta = -\frac{\pi}{4} + 2\pi = \frac{7\pi}{4} \][/tex]
So, [tex]\( w - z \)[/tex] expressed in polar form is:
[tex]\[ w - z = \sqrt{2}\left(\cos\left(\frac{7\pi}{4}\right) + i \sin\left(\frac{7\pi}{4}\right)\right) \][/tex]
Therefore, the correct option is:
[tex]\[ \sqrt{2}\left(\cos \left(\frac{7 \pi}{4}\right)+i \sin \left(\frac{7 \pi}{4}\right)\right) \][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.