Find answers to your most challenging questions with the help of IDNLearn.com's experts. Join our Q&A platform to access reliable and detailed answers from experts in various fields.
Sagot :
To determine which table has a constant of proportionality between [tex]\(y\)[/tex] and [tex]\(x\)[/tex] of [tex]\(\frac{3}{4}\)[/tex], we need to check if the ratio [tex]\(\frac{y}{x}\)[/tex] is consistently [tex]\(\frac{3}{4}\)[/tex] for all pairs [tex]\((x, y)\)[/tex] in the table. Let’s check each table step-by-step:
Table A:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 8 & 6 \\ 9 & \frac{27}{4} \\ 10 & \frac{15}{2} \\ \hline \end{array} \][/tex]
1. For [tex]\( (8, 6) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{6}{8} = \frac{3}{4} \][/tex]
2. For [tex]\( (9, \frac{27}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{27}{4}}{9} = \frac{27}{4} \times \frac{1}{9} = \frac{27}{36} = \frac{3}{4} \][/tex]
3. For [tex]\( (10, \frac{15}{2}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{15}{2}}{10} = \frac{15}{2} \times \frac{1}{10} = \frac{15}{20} = \frac{3}{4} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table A is [tex]\(\frac{3}{4}\)[/tex], Table A has a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Table B:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 3 & \frac{3}{4} \\ 4 & 1 \\ 5 & \frac{5}{4} \\ \hline \end{array} \][/tex]
1. For [tex]\( (3, \frac{3}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{3}{4}}{3} = \frac{3}{4} \times \frac{1}{3} = \frac{3}{12} = \frac{1}{4} \][/tex]
2. For [tex]\( (4, 1) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{1}{4} = \frac{1}{4} \][/tex]
3. For [tex]\( (5, \frac{5}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{5}{4}}{5} = \frac{5}{4} \times \frac{1}{5} = \frac{5}{20} = \frac{1}{4} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table B is [tex]\(\frac{1}{4}\)[/tex], Table B does not have a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Table C:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 10 & \frac{19}{2} \\ 11 & \frac{41}{4} \\ 12 & 11 \\ \hline \end{array} \][/tex]
1. For [tex]\( (10, \frac{19}{2}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{19}{2}}{10} = \frac{19}{2} \times \frac{1}{10} = \frac{19}{20} \][/tex]
2. For [tex]\( (11, \frac{41}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{41}{4}}{11} = \frac{41}{4} \times \frac{1}{11} = \frac{41}{44} \][/tex]
3. For [tex]\( (12, 11) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{11}{12} = \frac{11}{12} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table C is different and not equal to [tex]\(\frac{3}{4}\)[/tex], Table C does not have a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Given this analysis, the table that has a constant of proportionality between [tex]\(y\)[/tex] and [tex]\(x\)[/tex] of [tex]\(\frac{3}{4}\)[/tex] is:
[tex]\[ \boxed{A} \][/tex]
Table A:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 8 & 6 \\ 9 & \frac{27}{4} \\ 10 & \frac{15}{2} \\ \hline \end{array} \][/tex]
1. For [tex]\( (8, 6) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{6}{8} = \frac{3}{4} \][/tex]
2. For [tex]\( (9, \frac{27}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{27}{4}}{9} = \frac{27}{4} \times \frac{1}{9} = \frac{27}{36} = \frac{3}{4} \][/tex]
3. For [tex]\( (10, \frac{15}{2}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{15}{2}}{10} = \frac{15}{2} \times \frac{1}{10} = \frac{15}{20} = \frac{3}{4} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table A is [tex]\(\frac{3}{4}\)[/tex], Table A has a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Table B:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 3 & \frac{3}{4} \\ 4 & 1 \\ 5 & \frac{5}{4} \\ \hline \end{array} \][/tex]
1. For [tex]\( (3, \frac{3}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{3}{4}}{3} = \frac{3}{4} \times \frac{1}{3} = \frac{3}{12} = \frac{1}{4} \][/tex]
2. For [tex]\( (4, 1) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{1}{4} = \frac{1}{4} \][/tex]
3. For [tex]\( (5, \frac{5}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{5}{4}}{5} = \frac{5}{4} \times \frac{1}{5} = \frac{5}{20} = \frac{1}{4} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table B is [tex]\(\frac{1}{4}\)[/tex], Table B does not have a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Table C:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 10 & \frac{19}{2} \\ 11 & \frac{41}{4} \\ 12 & 11 \\ \hline \end{array} \][/tex]
1. For [tex]\( (10, \frac{19}{2}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{19}{2}}{10} = \frac{19}{2} \times \frac{1}{10} = \frac{19}{20} \][/tex]
2. For [tex]\( (11, \frac{41}{4}) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{\frac{41}{4}}{11} = \frac{41}{4} \times \frac{1}{11} = \frac{41}{44} \][/tex]
3. For [tex]\( (12, 11) \)[/tex]:
[tex]\[ \frac{y}{x} = \frac{11}{12} = \frac{11}{12} \][/tex]
Since each [tex]\(\frac{y}{x}\)[/tex] value in Table C is different and not equal to [tex]\(\frac{3}{4}\)[/tex], Table C does not have a constant proportionality of [tex]\(\frac{3}{4}\)[/tex].
Given this analysis, the table that has a constant of proportionality between [tex]\(y\)[/tex] and [tex]\(x\)[/tex] of [tex]\(\frac{3}{4}\)[/tex] is:
[tex]\[ \boxed{A} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Discover insightful answers at IDNLearn.com. We appreciate your visit and look forward to assisting you again.