Get expert advice and community support for your questions on IDNLearn.com. Get comprehensive and trustworthy answers to all your questions from our knowledgeable community members.
Sagot :
Sure, here is a step-by-step solution to find the value of the charge [tex]\( q_2 \)[/tex] given the conditions:
1. Identify the quantities given:
- Coulomb's constant, [tex]\( k = 8.9875517873681764 \times 10^9 \, \text{N m}^2/\text{C}^2 \)[/tex].
- Charge [tex]\( q_1 = 6.33 \, \mu\text{C} = 6.33 \times 10^{-6} \, \text{C} \)[/tex].
- Force, [tex]\( F = 0.115 \, \text{N} \)[/tex].
- Distance between charges, [tex]\( r = 1.44 \, \text{m} \)[/tex].
2. Use Coulomb's Law:
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
3. Solve for [tex]\( q_2 \)[/tex]:
[tex]\[ q_2 = \frac{F \cdot r^2}{k \cdot |q_1|} \][/tex]
4. Plug in the known values:
[tex]\[ q_2 = \frac{0.115 \, \text{N} \cdot (1.44 \, \text{m})^2}{8.9875517873681764 \times 10^9 \, \text{N m}^2/\text{C}^2 \cdot 6.33 \times 10^{-6} \, \text{C}} \][/tex]
5. Calculate the value:
[tex]\[ q_2 = \frac{0.115 \cdot 2.0736}{8.9875517873681764 \times 10^9 \cdot 6.33 \times 10^{-6}} \][/tex]
6. Simplify the numerator and denominator separately:
[tex]\[ q_2 = \frac{0.238464}{8.9875517873681764 \times 10^9 \cdot 6.33 \times 10^{-6}} \][/tex]
7. Combine the constants:
[tex]\[ q_2 = \frac{0.238464}{5.68821556884036957772 \times 10^4} \][/tex]
8. Perform the division:
[tex]\[ q_2 = 4.191579509743604 \times 10^{-6} \, \text{C} \][/tex]
9. Determine the sign:
Since the force between the charges is attractive, and [tex]\( q_1 \)[/tex] is positive ([tex]\(6.33 \, \mu C\)[/tex]), [tex]\( q_2 \)[/tex] must be negative.
Therefore, the value of [tex]\( q_2 \)[/tex] is:
[tex]\[ -4.191579509743604 \times 10^{-6} \, \text{C} \][/tex]
1. Identify the quantities given:
- Coulomb's constant, [tex]\( k = 8.9875517873681764 \times 10^9 \, \text{N m}^2/\text{C}^2 \)[/tex].
- Charge [tex]\( q_1 = 6.33 \, \mu\text{C} = 6.33 \times 10^{-6} \, \text{C} \)[/tex].
- Force, [tex]\( F = 0.115 \, \text{N} \)[/tex].
- Distance between charges, [tex]\( r = 1.44 \, \text{m} \)[/tex].
2. Use Coulomb's Law:
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
3. Solve for [tex]\( q_2 \)[/tex]:
[tex]\[ q_2 = \frac{F \cdot r^2}{k \cdot |q_1|} \][/tex]
4. Plug in the known values:
[tex]\[ q_2 = \frac{0.115 \, \text{N} \cdot (1.44 \, \text{m})^2}{8.9875517873681764 \times 10^9 \, \text{N m}^2/\text{C}^2 \cdot 6.33 \times 10^{-6} \, \text{C}} \][/tex]
5. Calculate the value:
[tex]\[ q_2 = \frac{0.115 \cdot 2.0736}{8.9875517873681764 \times 10^9 \cdot 6.33 \times 10^{-6}} \][/tex]
6. Simplify the numerator and denominator separately:
[tex]\[ q_2 = \frac{0.238464}{8.9875517873681764 \times 10^9 \cdot 6.33 \times 10^{-6}} \][/tex]
7. Combine the constants:
[tex]\[ q_2 = \frac{0.238464}{5.68821556884036957772 \times 10^4} \][/tex]
8. Perform the division:
[tex]\[ q_2 = 4.191579509743604 \times 10^{-6} \, \text{C} \][/tex]
9. Determine the sign:
Since the force between the charges is attractive, and [tex]\( q_1 \)[/tex] is positive ([tex]\(6.33 \, \mu C\)[/tex]), [tex]\( q_2 \)[/tex] must be negative.
Therefore, the value of [tex]\( q_2 \)[/tex] is:
[tex]\[ -4.191579509743604 \times 10^{-6} \, \text{C} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.