IDNLearn.com connects you with a global community of knowledgeable individuals. Our experts provide timely and precise responses to help you understand and solve any issue you face.
Sagot :
Sure! Let's go through the process of solving the given quadratic function [tex]\( f(x) = 3x^2 - 18x + 24 \)[/tex].
### a) The [tex]\( y \)[/tex]-intercept:
The [tex]\( y \)[/tex]-intercept of a function occurs where the graph intersects the [tex]\( y \)[/tex]-axis. This happens when [tex]\( x = 0 \)[/tex].
To find it, we substitute [tex]\( x = 0 \)[/tex] into the quadratic function:
[tex]\[ f(0) = 3(0)^2 - 18(0) + 24 \][/tex]
[tex]\[ f(0) = 24 \][/tex]
So, the [tex]\( y \)[/tex]-intercept is:
[tex]\[ (0, 24) \][/tex]
### b) The [tex]\( x \)[/tex]-intercepts:
The [tex]\( x \)[/tex]-intercepts are the points where the function intersects the [tex]\( x \)[/tex]-axis. This occurs when [tex]\( f(x) = 0 \)[/tex]. Thus, we solve the equation:
[tex]\[ 3x^2 - 18x + 24 = 0 \][/tex]
To solve this quadratic equation, we can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\( a = 3 \)[/tex], [tex]\( b = -18 \)[/tex], and [tex]\( c = 24 \)[/tex].
First, we need to find the discriminant ([tex]\( \Delta \)[/tex]):
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = (-18)^2 - 4(3)(24) \][/tex]
[tex]\[ \Delta = 324 - 288 \][/tex]
[tex]\[ \Delta = 36 \][/tex]
Since the discriminant is positive, we have two distinct real roots.
Next, we find the roots using the quadratic formula:
[tex]\[ x = \frac{-(-18) \pm \sqrt{36}}{2(3)} \][/tex]
[tex]\[ x = \frac{18 \pm 6}{6} \][/tex]
This gives us two solutions:
[tex]\[ x_1 = \frac{18 + 6}{6} = \frac{24}{6} = 4 \][/tex]
[tex]\[ x_2 = \frac{18 - 6}{6} = \frac{12}{6} = 2 \][/tex]
So, the [tex]\( x \)[/tex]-intercepts are:
[tex]\[ (4, 0) \text{ and } (2, 0) \][/tex]
### Final results:
a) The [tex]\( y \)[/tex]-intercept is [tex]\( (0, 24) \)[/tex].
b) The [tex]\( x \)[/tex]-intercepts are [tex]\( (4, 0) \)[/tex] and [tex]\( (2, 0) \)[/tex].
### a) The [tex]\( y \)[/tex]-intercept:
The [tex]\( y \)[/tex]-intercept of a function occurs where the graph intersects the [tex]\( y \)[/tex]-axis. This happens when [tex]\( x = 0 \)[/tex].
To find it, we substitute [tex]\( x = 0 \)[/tex] into the quadratic function:
[tex]\[ f(0) = 3(0)^2 - 18(0) + 24 \][/tex]
[tex]\[ f(0) = 24 \][/tex]
So, the [tex]\( y \)[/tex]-intercept is:
[tex]\[ (0, 24) \][/tex]
### b) The [tex]\( x \)[/tex]-intercepts:
The [tex]\( x \)[/tex]-intercepts are the points where the function intersects the [tex]\( x \)[/tex]-axis. This occurs when [tex]\( f(x) = 0 \)[/tex]. Thus, we solve the equation:
[tex]\[ 3x^2 - 18x + 24 = 0 \][/tex]
To solve this quadratic equation, we can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\( a = 3 \)[/tex], [tex]\( b = -18 \)[/tex], and [tex]\( c = 24 \)[/tex].
First, we need to find the discriminant ([tex]\( \Delta \)[/tex]):
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = (-18)^2 - 4(3)(24) \][/tex]
[tex]\[ \Delta = 324 - 288 \][/tex]
[tex]\[ \Delta = 36 \][/tex]
Since the discriminant is positive, we have two distinct real roots.
Next, we find the roots using the quadratic formula:
[tex]\[ x = \frac{-(-18) \pm \sqrt{36}}{2(3)} \][/tex]
[tex]\[ x = \frac{18 \pm 6}{6} \][/tex]
This gives us two solutions:
[tex]\[ x_1 = \frac{18 + 6}{6} = \frac{24}{6} = 4 \][/tex]
[tex]\[ x_2 = \frac{18 - 6}{6} = \frac{12}{6} = 2 \][/tex]
So, the [tex]\( x \)[/tex]-intercepts are:
[tex]\[ (4, 0) \text{ and } (2, 0) \][/tex]
### Final results:
a) The [tex]\( y \)[/tex]-intercept is [tex]\( (0, 24) \)[/tex].
b) The [tex]\( x \)[/tex]-intercepts are [tex]\( (4, 0) \)[/tex] and [tex]\( (2, 0) \)[/tex].
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. For trustworthy and accurate answers, visit IDNLearn.com. Thanks for stopping by, and see you next time for more solutions.