Discover a wealth of knowledge and get your questions answered on IDNLearn.com. Get the information you need quickly and accurately with our reliable and thorough Q&A platform.
Sagot :
To find the cardiac output using the dye dilution method, we are provided with a dye concentration function [tex]\( c(t) = 27t e^{-0.9t} \)[/tex], which models the dye concentration over time [tex]\( t \)[/tex] in seconds. The cardiac output in liters per second is given by [tex]\( 0.2001 \times \int_{0}^{10} c(t) \, dt \)[/tex].
Let's calculate this step by step:
1. Set up the integral:
We need to integrate the given function over the interval from 0 to 10:
[tex]\[ \int_{0}^{10} 27t e^{-0.9t} \, dt. \][/tex]
2. Use integration by parts:
To integrate [tex]\( 27t e^{-0.9t} \)[/tex], we apply integration by parts. The formula for integration by parts is:
[tex]\[ \int u \, dv = uv - \int v \, du, \][/tex]
where [tex]\( u = t \)[/tex] and [tex]\( dv = 27 e^{-0.9t} \, dt \)[/tex].
Differentiate and integrate:
[tex]\[ du = dt, \][/tex]
[tex]\[ v = \int 27 e^{-0.9t} \, dt = 27 \left( -\frac{1}{0.9} e^{-0.9t} \right) = -30 e^{-0.9t}. \][/tex]
3. Substitute into the integration by parts formula:
Now, substitute [tex]\( u = t \)[/tex], [tex]\( du = dt \)[/tex], [tex]\( v = -30 e^{-0.9t} \)[/tex], and [tex]\( dv = 27 e^{-0.9t} \, dt \)[/tex]:
[tex]\[ \int 27t e^{-0.9t} \, dt = t \cdot (-30 e^{-0.9t}) - \int (-30 e^{-0.9t}) \, dt. \][/tex]
Simplify both terms:
[tex]\[ = -30t e^{-0.9t} + 30 \int e^{-0.9t} \, dt. \][/tex]
Integrate [tex]\( \int e^{-0.9t} \, dt \)[/tex]:
[tex]\[ \int e^{-0.9t} \, dt = -\frac{1}{0.9} e^{-0.9t} = -\frac{10}{9} e^{-0.9t}. \][/tex]
4. Complete the integration:
Plug this back into our expression:
[tex]\[ \int 27t e^{-0.9t} \, dt = -30t e^{-0.9t} + 30 \left(-\frac{10}{9} e^{-0.9t}\right). \][/tex]
Simplify:
[tex]\[ = -30t e^{-0.9t} - \frac{300}{9} e^{-0.9t}. \][/tex]
Further simplify:
[tex]\[ = -30t e^{-0.9t} - \frac{100}{3} e^{-0.9t}. \][/tex]
Evaluate this integral from 0 to 10:
[tex]\[ \left[ -30t e^{-0.9t} - \frac{100}{3} e^{-0.9t} \right]_{0}^{10}. \][/tex]
5. Evaluate the definite integral:
Calculate at the upper limit [tex]\( t = 10 \)[/tex]:
[tex]\[ -30(10) e^{-0.9(10)} - \frac{100}{3} e^{-0.9(10)} = -300 e^{-9} - \frac{100}{3} e^{-9}. \][/tex]
Simplify:
[tex]\[ = -\left( 300 + \frac{100}{3} \right)e^{-9}. \][/tex]
Calculate at the lower limit [tex]\( t = 0 \)[/tex]:
[tex]\[ -30(0) e^{-0.9(0)} - \frac{100}{3} e^{-0.9(0)} = 0 - \frac{100}{3}. \][/tex]
6. Combine the results:
[tex]\[ \left[ -\left( 300 + \frac{100}{3} \right)e^{-9} \right] - \left[ 0 - \frac{100}{3} \right] = -\left( \frac{900}{3} + \frac{100}{3} \right)e^{-9} + \frac{100}{3}. \][/tex]
Simplify further:
[tex]\[ -\frac{1000}{3} e^{-9} + \frac{100}{3}. \][/tex]
7. Approximate solution:
Evaluate [tex]\( e^{-9} \approx 1.2341 \times 10^{-4} \)[/tex]
Thus,
[tex]\[ -\frac{1000}{3} \times 1.2341 \times 10^{-4} + \frac{100}{3} = -0.4113 + 33.3333 \approx 32.9220. \][/tex]
8. Cardiac output:
Multiply by the given coefficient [tex]\( 0.2001 \)[/tex]:
[tex]\[ 0.2001 \times 32.9220 \approx 6.5869. \][/tex]
Thus, the cardiac output is approximately [tex]\( 6.5869 \)[/tex] liters per second (rounded to four decimal places).
Let's calculate this step by step:
1. Set up the integral:
We need to integrate the given function over the interval from 0 to 10:
[tex]\[ \int_{0}^{10} 27t e^{-0.9t} \, dt. \][/tex]
2. Use integration by parts:
To integrate [tex]\( 27t e^{-0.9t} \)[/tex], we apply integration by parts. The formula for integration by parts is:
[tex]\[ \int u \, dv = uv - \int v \, du, \][/tex]
where [tex]\( u = t \)[/tex] and [tex]\( dv = 27 e^{-0.9t} \, dt \)[/tex].
Differentiate and integrate:
[tex]\[ du = dt, \][/tex]
[tex]\[ v = \int 27 e^{-0.9t} \, dt = 27 \left( -\frac{1}{0.9} e^{-0.9t} \right) = -30 e^{-0.9t}. \][/tex]
3. Substitute into the integration by parts formula:
Now, substitute [tex]\( u = t \)[/tex], [tex]\( du = dt \)[/tex], [tex]\( v = -30 e^{-0.9t} \)[/tex], and [tex]\( dv = 27 e^{-0.9t} \, dt \)[/tex]:
[tex]\[ \int 27t e^{-0.9t} \, dt = t \cdot (-30 e^{-0.9t}) - \int (-30 e^{-0.9t}) \, dt. \][/tex]
Simplify both terms:
[tex]\[ = -30t e^{-0.9t} + 30 \int e^{-0.9t} \, dt. \][/tex]
Integrate [tex]\( \int e^{-0.9t} \, dt \)[/tex]:
[tex]\[ \int e^{-0.9t} \, dt = -\frac{1}{0.9} e^{-0.9t} = -\frac{10}{9} e^{-0.9t}. \][/tex]
4. Complete the integration:
Plug this back into our expression:
[tex]\[ \int 27t e^{-0.9t} \, dt = -30t e^{-0.9t} + 30 \left(-\frac{10}{9} e^{-0.9t}\right). \][/tex]
Simplify:
[tex]\[ = -30t e^{-0.9t} - \frac{300}{9} e^{-0.9t}. \][/tex]
Further simplify:
[tex]\[ = -30t e^{-0.9t} - \frac{100}{3} e^{-0.9t}. \][/tex]
Evaluate this integral from 0 to 10:
[tex]\[ \left[ -30t e^{-0.9t} - \frac{100}{3} e^{-0.9t} \right]_{0}^{10}. \][/tex]
5. Evaluate the definite integral:
Calculate at the upper limit [tex]\( t = 10 \)[/tex]:
[tex]\[ -30(10) e^{-0.9(10)} - \frac{100}{3} e^{-0.9(10)} = -300 e^{-9} - \frac{100}{3} e^{-9}. \][/tex]
Simplify:
[tex]\[ = -\left( 300 + \frac{100}{3} \right)e^{-9}. \][/tex]
Calculate at the lower limit [tex]\( t = 0 \)[/tex]:
[tex]\[ -30(0) e^{-0.9(0)} - \frac{100}{3} e^{-0.9(0)} = 0 - \frac{100}{3}. \][/tex]
6. Combine the results:
[tex]\[ \left[ -\left( 300 + \frac{100}{3} \right)e^{-9} \right] - \left[ 0 - \frac{100}{3} \right] = -\left( \frac{900}{3} + \frac{100}{3} \right)e^{-9} + \frac{100}{3}. \][/tex]
Simplify further:
[tex]\[ -\frac{1000}{3} e^{-9} + \frac{100}{3}. \][/tex]
7. Approximate solution:
Evaluate [tex]\( e^{-9} \approx 1.2341 \times 10^{-4} \)[/tex]
Thus,
[tex]\[ -\frac{1000}{3} \times 1.2341 \times 10^{-4} + \frac{100}{3} = -0.4113 + 33.3333 \approx 32.9220. \][/tex]
8. Cardiac output:
Multiply by the given coefficient [tex]\( 0.2001 \)[/tex]:
[tex]\[ 0.2001 \times 32.9220 \approx 6.5869. \][/tex]
Thus, the cardiac output is approximately [tex]\( 6.5869 \)[/tex] liters per second (rounded to four decimal places).
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.