IDNLearn.com offers a comprehensive platform for finding and sharing knowledge. Ask your questions and receive detailed and reliable answers from our experienced and knowledgeable community members.
Sagot :
Certainly!
To rewrite the absolute value function [tex]\( f(x) = -4|x+1| + 2 \)[/tex] as a piecewise function, we need to consider the definition of the absolute value function, which is given by:
[tex]\[ |x+1| = \begin{cases} x + 1 & \text{if } x + 1 \geq 0 \\ -(x + 1) & \text{if } x + 1 < 0 \end{cases} \][/tex]
This means we have two cases to consider based on the value of [tex]\( x \)[/tex]:
1. Case 1: [tex]\( x + 1 \geq 0 \)[/tex]
This inequality can be simplified to:
[tex]\[ x \geq -1 \][/tex]
In this case, the absolute value function [tex]\( |x+1| \)[/tex] can be replaced by [tex]\( x + 1 \)[/tex]. Therefore,
[tex]\[ f(x) = -4|x+1| + 2 = -4(x+1) + 2 \][/tex]
Simplifying the expression:
[tex]\[ f(x) = -4x - 4 + 2 \][/tex]
[tex]\[ f(x) = -4x - 2 \][/tex]
2. Case 2: [tex]\( x + 1 < 0 \)[/tex]
This inequality can be simplified to:
[tex]\[ x < -1 \][/tex]
In this case, the absolute value function [tex]\( |x+1| \)[/tex] can be replaced by [tex]\( -(x + 1) \)[/tex]. Therefore,
[tex]\[ f(x) = -4|x+1| + 2 = -4(-(x+1)) + 2 \][/tex]
Simplifying the expression:
[tex]\[ f(x) = -4(-x - 1) + 2 \][/tex]
[tex]\[ f(x) = 4x + 4 + 2 \][/tex]
[tex]\[ f(x) = 4x + 6 \][/tex]
So, the original absolute value function can be rewritten as a piecewise function:
[tex]\[ f(x) = \begin{cases} -4(x + 1) + 2 \quad \text{if } x \geq -1 \\ -4(-(x + 1)) + 2 \quad \text{if } x < -1 \end{cases} \][/tex]
Putting this all together, we get the piecewise function:
[tex]\[ f(x) = \begin{cases} -4x - 2 \quad \text{if } x \geq -1 \\ 4x + 6 \quad \text{if } x < -1 \end{cases} \][/tex]
Hence, the function [tex]\( f(x) = -4|x+1| + 2 \)[/tex] expressed as a piecewise function is:
[tex]\[ f(x) = \begin{cases} -4(x + 1) + 2 \quad \text{if } x \geq -1 \\ -4(-(x + 1)) + 2 \quad \text{if } x < -1 \end{cases} \][/tex]
To rewrite the absolute value function [tex]\( f(x) = -4|x+1| + 2 \)[/tex] as a piecewise function, we need to consider the definition of the absolute value function, which is given by:
[tex]\[ |x+1| = \begin{cases} x + 1 & \text{if } x + 1 \geq 0 \\ -(x + 1) & \text{if } x + 1 < 0 \end{cases} \][/tex]
This means we have two cases to consider based on the value of [tex]\( x \)[/tex]:
1. Case 1: [tex]\( x + 1 \geq 0 \)[/tex]
This inequality can be simplified to:
[tex]\[ x \geq -1 \][/tex]
In this case, the absolute value function [tex]\( |x+1| \)[/tex] can be replaced by [tex]\( x + 1 \)[/tex]. Therefore,
[tex]\[ f(x) = -4|x+1| + 2 = -4(x+1) + 2 \][/tex]
Simplifying the expression:
[tex]\[ f(x) = -4x - 4 + 2 \][/tex]
[tex]\[ f(x) = -4x - 2 \][/tex]
2. Case 2: [tex]\( x + 1 < 0 \)[/tex]
This inequality can be simplified to:
[tex]\[ x < -1 \][/tex]
In this case, the absolute value function [tex]\( |x+1| \)[/tex] can be replaced by [tex]\( -(x + 1) \)[/tex]. Therefore,
[tex]\[ f(x) = -4|x+1| + 2 = -4(-(x+1)) + 2 \][/tex]
Simplifying the expression:
[tex]\[ f(x) = -4(-x - 1) + 2 \][/tex]
[tex]\[ f(x) = 4x + 4 + 2 \][/tex]
[tex]\[ f(x) = 4x + 6 \][/tex]
So, the original absolute value function can be rewritten as a piecewise function:
[tex]\[ f(x) = \begin{cases} -4(x + 1) + 2 \quad \text{if } x \geq -1 \\ -4(-(x + 1)) + 2 \quad \text{if } x < -1 \end{cases} \][/tex]
Putting this all together, we get the piecewise function:
[tex]\[ f(x) = \begin{cases} -4x - 2 \quad \text{if } x \geq -1 \\ 4x + 6 \quad \text{if } x < -1 \end{cases} \][/tex]
Hence, the function [tex]\( f(x) = -4|x+1| + 2 \)[/tex] expressed as a piecewise function is:
[tex]\[ f(x) = \begin{cases} -4(x + 1) + 2 \quad \text{if } x \geq -1 \\ -4(-(x + 1)) + 2 \quad \text{if } x < -1 \end{cases} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your search for answers ends at IDNLearn.com. Thank you for visiting, and we hope to assist you again soon.