IDNLearn.com provides a collaborative platform for sharing and gaining knowledge. Get accurate and timely answers to your queries from our extensive network of experienced professionals.
Sagot :
Certainly!
To rewrite the absolute value function [tex]\( f(x) = -4|x+1| + 2 \)[/tex] as a piecewise function, we need to consider the definition of the absolute value function, which is given by:
[tex]\[ |x+1| = \begin{cases} x + 1 & \text{if } x + 1 \geq 0 \\ -(x + 1) & \text{if } x + 1 < 0 \end{cases} \][/tex]
This means we have two cases to consider based on the value of [tex]\( x \)[/tex]:
1. Case 1: [tex]\( x + 1 \geq 0 \)[/tex]
This inequality can be simplified to:
[tex]\[ x \geq -1 \][/tex]
In this case, the absolute value function [tex]\( |x+1| \)[/tex] can be replaced by [tex]\( x + 1 \)[/tex]. Therefore,
[tex]\[ f(x) = -4|x+1| + 2 = -4(x+1) + 2 \][/tex]
Simplifying the expression:
[tex]\[ f(x) = -4x - 4 + 2 \][/tex]
[tex]\[ f(x) = -4x - 2 \][/tex]
2. Case 2: [tex]\( x + 1 < 0 \)[/tex]
This inequality can be simplified to:
[tex]\[ x < -1 \][/tex]
In this case, the absolute value function [tex]\( |x+1| \)[/tex] can be replaced by [tex]\( -(x + 1) \)[/tex]. Therefore,
[tex]\[ f(x) = -4|x+1| + 2 = -4(-(x+1)) + 2 \][/tex]
Simplifying the expression:
[tex]\[ f(x) = -4(-x - 1) + 2 \][/tex]
[tex]\[ f(x) = 4x + 4 + 2 \][/tex]
[tex]\[ f(x) = 4x + 6 \][/tex]
So, the original absolute value function can be rewritten as a piecewise function:
[tex]\[ f(x) = \begin{cases} -4(x + 1) + 2 \quad \text{if } x \geq -1 \\ -4(-(x + 1)) + 2 \quad \text{if } x < -1 \end{cases} \][/tex]
Putting this all together, we get the piecewise function:
[tex]\[ f(x) = \begin{cases} -4x - 2 \quad \text{if } x \geq -1 \\ 4x + 6 \quad \text{if } x < -1 \end{cases} \][/tex]
Hence, the function [tex]\( f(x) = -4|x+1| + 2 \)[/tex] expressed as a piecewise function is:
[tex]\[ f(x) = \begin{cases} -4(x + 1) + 2 \quad \text{if } x \geq -1 \\ -4(-(x + 1)) + 2 \quad \text{if } x < -1 \end{cases} \][/tex]
To rewrite the absolute value function [tex]\( f(x) = -4|x+1| + 2 \)[/tex] as a piecewise function, we need to consider the definition of the absolute value function, which is given by:
[tex]\[ |x+1| = \begin{cases} x + 1 & \text{if } x + 1 \geq 0 \\ -(x + 1) & \text{if } x + 1 < 0 \end{cases} \][/tex]
This means we have two cases to consider based on the value of [tex]\( x \)[/tex]:
1. Case 1: [tex]\( x + 1 \geq 0 \)[/tex]
This inequality can be simplified to:
[tex]\[ x \geq -1 \][/tex]
In this case, the absolute value function [tex]\( |x+1| \)[/tex] can be replaced by [tex]\( x + 1 \)[/tex]. Therefore,
[tex]\[ f(x) = -4|x+1| + 2 = -4(x+1) + 2 \][/tex]
Simplifying the expression:
[tex]\[ f(x) = -4x - 4 + 2 \][/tex]
[tex]\[ f(x) = -4x - 2 \][/tex]
2. Case 2: [tex]\( x + 1 < 0 \)[/tex]
This inequality can be simplified to:
[tex]\[ x < -1 \][/tex]
In this case, the absolute value function [tex]\( |x+1| \)[/tex] can be replaced by [tex]\( -(x + 1) \)[/tex]. Therefore,
[tex]\[ f(x) = -4|x+1| + 2 = -4(-(x+1)) + 2 \][/tex]
Simplifying the expression:
[tex]\[ f(x) = -4(-x - 1) + 2 \][/tex]
[tex]\[ f(x) = 4x + 4 + 2 \][/tex]
[tex]\[ f(x) = 4x + 6 \][/tex]
So, the original absolute value function can be rewritten as a piecewise function:
[tex]\[ f(x) = \begin{cases} -4(x + 1) + 2 \quad \text{if } x \geq -1 \\ -4(-(x + 1)) + 2 \quad \text{if } x < -1 \end{cases} \][/tex]
Putting this all together, we get the piecewise function:
[tex]\[ f(x) = \begin{cases} -4x - 2 \quad \text{if } x \geq -1 \\ 4x + 6 \quad \text{if } x < -1 \end{cases} \][/tex]
Hence, the function [tex]\( f(x) = -4|x+1| + 2 \)[/tex] expressed as a piecewise function is:
[tex]\[ f(x) = \begin{cases} -4(x + 1) + 2 \quad \text{if } x \geq -1 \\ -4(-(x + 1)) + 2 \quad \text{if } x < -1 \end{cases} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.