IDNLearn.com helps you find the answers you need quickly and efficiently. Discover in-depth and trustworthy answers to all your questions from our experienced community members.
Sagot :
Sure, let’s work through the problem step-by-step. We are given the equation:
[tex]\[ P(n, 2) + 24 = P(2n, 2) \][/tex]
where [tex]\(P(n, k)\)[/tex] is the number of permutations of [tex]\(n\)[/tex] items taken [tex]\(k\)[/tex] at a time.
The formula for permutations [tex]\(P(n, k)\)[/tex] is:
[tex]\[ P(n, k) = \frac{n!}{(n-k)!} \][/tex]
For [tex]\(P(n, 2)\)[/tex], the formula becomes:
[tex]\[ P(n, 2) = \frac{n!}{(n-2)!} \][/tex]
Similarly, for [tex]\(P(2n, 2)\)[/tex], the formula is:
[tex]\[ P(2n, 2) = \frac{(2n)!}{(2n-2)!} \][/tex]
Let's substitute these into the given equation:
[tex]\[ \frac{n!}{(n-2)!} + 24 = \frac{(2n)!}{(2n-2)!} \][/tex]
We know that:
[tex]\[ \frac{n!}{(n-2)!} = n \times (n-1) \][/tex]
So, the equation becomes:
[tex]\[ n(n-1) + 24 = \frac{(2n)!}{(2n-2)!} \][/tex]
Next, we can simplify [tex]\(\frac{(2n)!}{(2n-2)!}\)[/tex] as:
[tex]\[ \frac{(2n)!}{(2n-2)!} = (2n)(2n-1) \][/tex]
Thus, the equation now is:
[tex]\[ n(n-1) + 24 = (2n)(2n-1) \][/tex]
We expand both sides:
[tex]\[ n^2 - n + 24 = 4n^2 - 2n \][/tex]
Rearrange all terms to one side of the equation to set it to zero:
[tex]\[ n^2 - n + 24 = 4n^2 - 2n \][/tex]
[tex]\[ n^2 - n + 24 - 4n^2 + 2n = 0 \][/tex]
Combine like terms:
[tex]\[ -3n^2 + n + 24 = 0 \][/tex]
Multiply through by -1 to make the quadratic easier to work with:
[tex]\[ 3n^2 - n - 24 = 0 \][/tex]
This is a standard quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex], with [tex]\(a = 3\)[/tex], [tex]\(b = -1\)[/tex], and [tex]\(c = -24\)[/tex]. We can solve this using the quadratic formula:
[tex]\[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substitute [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ n = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(3)(-24)}}{2(3)} \][/tex]
[tex]\[ n = \frac{1 \pm \sqrt{1 + 288}}{6} \][/tex]
[tex]\[ n = \frac{1 \pm \sqrt{289}}{6} \][/tex]
[tex]\[ n = \frac{1 \pm 17}{6} \][/tex]
This gives us two potential solutions:
[tex]\[ n = \frac{1 + 17}{6} = \frac{18}{6} = 3 \][/tex]
[tex]\[ n = \frac{1 - 17}{6} = \frac{-16}{6} = -\frac{8}{3} \][/tex]
Since [tex]\(n\)[/tex] must be positive, we discard [tex]\(-\frac{8}{3}\)[/tex] and keep:
[tex]\[ n = 3 \][/tex]
Thus, the positive value of [tex]\(n\)[/tex] is [tex]\(\boxed{3}\)[/tex].
[tex]\[ P(n, 2) + 24 = P(2n, 2) \][/tex]
where [tex]\(P(n, k)\)[/tex] is the number of permutations of [tex]\(n\)[/tex] items taken [tex]\(k\)[/tex] at a time.
The formula for permutations [tex]\(P(n, k)\)[/tex] is:
[tex]\[ P(n, k) = \frac{n!}{(n-k)!} \][/tex]
For [tex]\(P(n, 2)\)[/tex], the formula becomes:
[tex]\[ P(n, 2) = \frac{n!}{(n-2)!} \][/tex]
Similarly, for [tex]\(P(2n, 2)\)[/tex], the formula is:
[tex]\[ P(2n, 2) = \frac{(2n)!}{(2n-2)!} \][/tex]
Let's substitute these into the given equation:
[tex]\[ \frac{n!}{(n-2)!} + 24 = \frac{(2n)!}{(2n-2)!} \][/tex]
We know that:
[tex]\[ \frac{n!}{(n-2)!} = n \times (n-1) \][/tex]
So, the equation becomes:
[tex]\[ n(n-1) + 24 = \frac{(2n)!}{(2n-2)!} \][/tex]
Next, we can simplify [tex]\(\frac{(2n)!}{(2n-2)!}\)[/tex] as:
[tex]\[ \frac{(2n)!}{(2n-2)!} = (2n)(2n-1) \][/tex]
Thus, the equation now is:
[tex]\[ n(n-1) + 24 = (2n)(2n-1) \][/tex]
We expand both sides:
[tex]\[ n^2 - n + 24 = 4n^2 - 2n \][/tex]
Rearrange all terms to one side of the equation to set it to zero:
[tex]\[ n^2 - n + 24 = 4n^2 - 2n \][/tex]
[tex]\[ n^2 - n + 24 - 4n^2 + 2n = 0 \][/tex]
Combine like terms:
[tex]\[ -3n^2 + n + 24 = 0 \][/tex]
Multiply through by -1 to make the quadratic easier to work with:
[tex]\[ 3n^2 - n - 24 = 0 \][/tex]
This is a standard quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex], with [tex]\(a = 3\)[/tex], [tex]\(b = -1\)[/tex], and [tex]\(c = -24\)[/tex]. We can solve this using the quadratic formula:
[tex]\[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substitute [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ n = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(3)(-24)}}{2(3)} \][/tex]
[tex]\[ n = \frac{1 \pm \sqrt{1 + 288}}{6} \][/tex]
[tex]\[ n = \frac{1 \pm \sqrt{289}}{6} \][/tex]
[tex]\[ n = \frac{1 \pm 17}{6} \][/tex]
This gives us two potential solutions:
[tex]\[ n = \frac{1 + 17}{6} = \frac{18}{6} = 3 \][/tex]
[tex]\[ n = \frac{1 - 17}{6} = \frac{-16}{6} = -\frac{8}{3} \][/tex]
Since [tex]\(n\)[/tex] must be positive, we discard [tex]\(-\frac{8}{3}\)[/tex] and keep:
[tex]\[ n = 3 \][/tex]
Thus, the positive value of [tex]\(n\)[/tex] is [tex]\(\boxed{3}\)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.