IDNLearn.com provides a user-friendly platform for finding and sharing knowledge. Ask anything and receive prompt, well-informed answers from our community of experienced experts.
Sagot :
To determine the distance covered by the rocket, we will use the kinematic equation for uniformly accelerated motion. The equation is:
[tex]\[ \text{distance} = \text{initial velocity} \times \text{time} + \frac{1}{2} \times \text{acceleration} \times (\text{time})^2 \][/tex]
Given values:
- Initial velocity, [tex]\( u = 0 \)[/tex] meters/second (since the rocket is initially at rest)
- Acceleration, [tex]\( a = 99.0 \)[/tex] meters/second[tex]\(^2\)[/tex]
- Time, [tex]\( t = 4.50 \)[/tex] seconds
Substituting these values into the equation:
[tex]\[ \text{distance} = 0 \times 4.50 + \frac{1}{2} \times 99.0 \times (4.50)^2 \][/tex]
Since the initial velocity term [tex]\( 0 \times 4.50 \)[/tex] is [tex]\( 0 \)[/tex], we simplify the equation to:
[tex]\[ \text{distance} = \frac{1}{2} \times 99.0 \times (4.50)^2 \][/tex]
Calculating:
1. First, calculate the square of the time:
[tex]\[ (4.50)^2 = 20.25 \][/tex]
2. Then multiply by the acceleration:
[tex]\[ 99.0 \times 20.25 = 2004.75 \][/tex]
3. Now, divide by 2:
[tex]\[ \frac{2004.75}{2} = 1002.375 \][/tex]
Thus, the distance covered by the rocket is:
[tex]\[ 1002.375 \text{ meters} \][/tex]
Looking at the options given:
A. [tex]\( 2.50 \times 10^2 \)[/tex] meters
B. [tex]\( 1.00 \times 10^3 \)[/tex] meters
C. [tex]\( 5.05 \times 10^2 \)[/tex] meters
D. [tex]\( 2.00 \times 10^3 \)[/tex] meters
E. [tex]\( 1.00 \times 10^2 \)[/tex] meters
The correct answer is:
[tex]\[ \boxed{1.00 \times 10^3 \text{ meters}} \][/tex]
So, the correct answer is [tex]\( B \)[/tex].
[tex]\[ \text{distance} = \text{initial velocity} \times \text{time} + \frac{1}{2} \times \text{acceleration} \times (\text{time})^2 \][/tex]
Given values:
- Initial velocity, [tex]\( u = 0 \)[/tex] meters/second (since the rocket is initially at rest)
- Acceleration, [tex]\( a = 99.0 \)[/tex] meters/second[tex]\(^2\)[/tex]
- Time, [tex]\( t = 4.50 \)[/tex] seconds
Substituting these values into the equation:
[tex]\[ \text{distance} = 0 \times 4.50 + \frac{1}{2} \times 99.0 \times (4.50)^2 \][/tex]
Since the initial velocity term [tex]\( 0 \times 4.50 \)[/tex] is [tex]\( 0 \)[/tex], we simplify the equation to:
[tex]\[ \text{distance} = \frac{1}{2} \times 99.0 \times (4.50)^2 \][/tex]
Calculating:
1. First, calculate the square of the time:
[tex]\[ (4.50)^2 = 20.25 \][/tex]
2. Then multiply by the acceleration:
[tex]\[ 99.0 \times 20.25 = 2004.75 \][/tex]
3. Now, divide by 2:
[tex]\[ \frac{2004.75}{2} = 1002.375 \][/tex]
Thus, the distance covered by the rocket is:
[tex]\[ 1002.375 \text{ meters} \][/tex]
Looking at the options given:
A. [tex]\( 2.50 \times 10^2 \)[/tex] meters
B. [tex]\( 1.00 \times 10^3 \)[/tex] meters
C. [tex]\( 5.05 \times 10^2 \)[/tex] meters
D. [tex]\( 2.00 \times 10^3 \)[/tex] meters
E. [tex]\( 1.00 \times 10^2 \)[/tex] meters
The correct answer is:
[tex]\[ \boxed{1.00 \times 10^3 \text{ meters}} \][/tex]
So, the correct answer is [tex]\( B \)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.