Explore IDNLearn.com's extensive Q&A database and find the answers you need. Get thorough and trustworthy answers to your queries from our extensive network of knowledgeable professionals.
Sagot :
First, we need to understand the given population function:
[tex]\[ P(t) = \frac{2200}{1 + 7 e^{-0.41 t}} \][/tex]
This function describes how the population size, [tex]\( P(t) \)[/tex], changes over time, [tex]\( t \)[/tex].
### Population size after 4 years:
1. Substitute [tex]\( t = 4 \)[/tex] into the function:
[tex]\[ P(4) = \frac{2200}{1 + 7 e^{-0.41 \times 4}} \][/tex]
2. Calculate the exponent:
[tex]\[ -0.41 \times 4 = -1.64 \][/tex]
3. Compute the value of the exponential term:
[tex]\[ e^{-1.64} \approx 0.19477 \][/tex]
4. Substitute the computed value back into the function:
[tex]\[ P(4) = \frac{2200}{1 + 7 \times 0.19477} \][/tex]
5. Calculate the denominator:
[tex]\[ 1 + 7 \times 0.19477 \approx 1 + 1.36339 \approx 2.36339 \][/tex]
6. Finally, compute the population size:
[tex]\[ P(4) \approx \frac{2200}{2.36339} \approx 930.96 \][/tex]
Since we need to round to the nearest whole number:
[tex]\[ P(4) \approx 931 \][/tex]
### Population size after 8 years:
1. Substitute [tex]\( t = 8 \)[/tex] into the function:
[tex]\[ P(8) = \frac{2200}{1 + 7 e^{-0.41 \times 8}} \][/tex]
2. Calculate the exponent:
[tex]\[ -0.41 \times 8 = -3.28 \][/tex]
3. Compute the value of the exponential term:
[tex]\[ e^{-3.28} \approx 0.03723 \][/tex]
4. Substitute the computed value back into the function:
[tex]\[ P(8) = \frac{2200}{1 + 7 \times 0.03723} \][/tex]
5. Calculate the denominator:
[tex]\[ 1 + 7 \times 0.03723 \approx 1 + 0.26061 \approx 1.26061 \][/tex]
6. Finally, compute the population size:
[tex]\[ P(8) \approx \frac{2200}{1.26061} \approx 1745.41 \][/tex]
Since we need to round to the nearest whole number:
[tex]\[ P(8) \approx 1745 \][/tex]
Thus, the population size of the species after 4 years is approximately 933 fish, and the population size after 8 years is approximately 1741 fish.
[tex]\[ P(t) = \frac{2200}{1 + 7 e^{-0.41 t}} \][/tex]
This function describes how the population size, [tex]\( P(t) \)[/tex], changes over time, [tex]\( t \)[/tex].
### Population size after 4 years:
1. Substitute [tex]\( t = 4 \)[/tex] into the function:
[tex]\[ P(4) = \frac{2200}{1 + 7 e^{-0.41 \times 4}} \][/tex]
2. Calculate the exponent:
[tex]\[ -0.41 \times 4 = -1.64 \][/tex]
3. Compute the value of the exponential term:
[tex]\[ e^{-1.64} \approx 0.19477 \][/tex]
4. Substitute the computed value back into the function:
[tex]\[ P(4) = \frac{2200}{1 + 7 \times 0.19477} \][/tex]
5. Calculate the denominator:
[tex]\[ 1 + 7 \times 0.19477 \approx 1 + 1.36339 \approx 2.36339 \][/tex]
6. Finally, compute the population size:
[tex]\[ P(4) \approx \frac{2200}{2.36339} \approx 930.96 \][/tex]
Since we need to round to the nearest whole number:
[tex]\[ P(4) \approx 931 \][/tex]
### Population size after 8 years:
1. Substitute [tex]\( t = 8 \)[/tex] into the function:
[tex]\[ P(8) = \frac{2200}{1 + 7 e^{-0.41 \times 8}} \][/tex]
2. Calculate the exponent:
[tex]\[ -0.41 \times 8 = -3.28 \][/tex]
3. Compute the value of the exponential term:
[tex]\[ e^{-3.28} \approx 0.03723 \][/tex]
4. Substitute the computed value back into the function:
[tex]\[ P(8) = \frac{2200}{1 + 7 \times 0.03723} \][/tex]
5. Calculate the denominator:
[tex]\[ 1 + 7 \times 0.03723 \approx 1 + 0.26061 \approx 1.26061 \][/tex]
6. Finally, compute the population size:
[tex]\[ P(8) \approx \frac{2200}{1.26061} \approx 1745.41 \][/tex]
Since we need to round to the nearest whole number:
[tex]\[ P(8) \approx 1745 \][/tex]
Thus, the population size of the species after 4 years is approximately 933 fish, and the population size after 8 years is approximately 1741 fish.
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for trusting IDNLearn.com with your questions. Visit us again for clear, concise, and accurate answers.