Find solutions to your problems with the expert advice available on IDNLearn.com. Get timely and accurate answers to your questions from our dedicated community of experts who are here to help you.

Consider the reaction [tex]H_2(g) + I_2(g) \Leftrightarrow 2 HI(g)[/tex].

What is the reaction quotient, [tex]Q[/tex], for this system when [tex][H_2] = 0.100 \, \text{M}[/tex], [tex][I_2] = 0.200 \, \text{M}[/tex], and [tex][HI] = 3.50 \, \text{M}[/tex]?

A. 87.5
B. 175
C. 350
D. 613


Sagot :

To determine the reaction quotient, [tex]\( Q \)[/tex], for the reaction [tex]\( H_2(g) + I_2(g) \Leftrightarrow 2 HI(g) \)[/tex], we need to use the formula for [tex]\( Q \)[/tex]:

[tex]\[ Q = \frac{[HI]^2}{[H_2][I_2]} \][/tex]

Given the concentrations:
- [tex]\([H_2] = 0.100 \, \text{M}\)[/tex]
- [tex]\([I_2] = 0.200 \, \text{M}\)[/tex]
- [tex]\([HI] = 3.50 \, \text{M}\)[/tex]

Now, plug these concentrations into the reaction quotient formula:

[tex]\[ Q = \frac{[HI]^2}{[H_2][I_2]} \][/tex]

Substitute the given values:

[tex]\[ Q = \frac{(3.50)^2}{(0.100)(0.200)} \][/tex]

Calculate the numerator (the concentration of [tex]\( HI \)[/tex] squared):

[tex]\[ (3.50)^2 = 12.25 \][/tex]

Then, calculate the denominator (the product of the concentrations of [tex]\( H_2 \)[/tex] and [tex]\( I_2 \)[/tex]):

[tex]\[ (0.100)(0.200) = 0.020 \][/tex]

Now, put these together to find [tex]\( Q \)[/tex]:

[tex]\[ Q = \frac{12.25}{0.020} \][/tex]

Finally, perform the division:

[tex]\[ Q = 612.5 \][/tex]

So, the reaction quotient [tex]\( Q \)[/tex] for this system is approximately [tex]\( 613 \)[/tex]. Hence, the correct answer is:

[tex]\[ \boxed{613} \][/tex]