Explore a diverse range of topics and get answers from knowledgeable individuals on IDNLearn.com. Discover reliable and timely information on any topic from our network of experienced professionals.
Sagot :
To determine the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at 600 K, we will use the given equilibrium concentrations. The balanced chemical equation for the reaction is:
[tex]\[ H_2(g) + CO_2(g) \rightarrow H_2O(g) + CO(g) \][/tex]
The expression for the equilibrium constant [tex]\( K_c \)[/tex] is given by the concentrations of the products divided by the concentrations of the reactants, each raised to the power of their respective coefficients in the balanced equation.
[tex]\[ K_c = \frac{[H_2O][CO]}{[H_2][CO_2]} \][/tex]
Substitute the given equilibrium concentrations into this expression:
[tex]\[ [CO_2] = 9.5 \times 10^{-4} \, \text{M} \][/tex]
[tex]\[ [H_2] = 4.5 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ [H_2O] = 4.6 \times 10^{-3} \, \text{M} \][/tex]
[tex]\[ [CO] = 4.6 \times 10^{-3} \, \text{M} \][/tex]
So,
[tex]\[ K_c = \frac{(4.6 \times 10^{-3})(4.6 \times 10^{-3})}{(4.5 \times 10^{-2})(9.5 \times 10^{-4})} \][/tex]
This calculation results in:
[tex]\[ K_c = \frac{(4.6 \times 10^{-3})^2}{(4.5 \times 10^{-2})(9.5 \times 10^{-4})} \][/tex]
[tex]\[ K_c = \frac{2.116 \times 10^{-5}}{4.275 \times 10^{-5}} \][/tex]
[tex]\[ K_c \approx 0.495 \][/tex]
Converting this to scientific notation, we obtain:
[tex]\[ K_c \approx 4.9 \times 10^{-1} \][/tex]
Therefore, the value of the equilibrium constant for this reaction is [tex]\( 4.9 \times 10^{-1} \)[/tex]. So, the correct answer is:
[tex]\[ 4.9 \times 10^{-1} \][/tex]
[tex]\[ H_2(g) + CO_2(g) \rightarrow H_2O(g) + CO(g) \][/tex]
The expression for the equilibrium constant [tex]\( K_c \)[/tex] is given by the concentrations of the products divided by the concentrations of the reactants, each raised to the power of their respective coefficients in the balanced equation.
[tex]\[ K_c = \frac{[H_2O][CO]}{[H_2][CO_2]} \][/tex]
Substitute the given equilibrium concentrations into this expression:
[tex]\[ [CO_2] = 9.5 \times 10^{-4} \, \text{M} \][/tex]
[tex]\[ [H_2] = 4.5 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ [H_2O] = 4.6 \times 10^{-3} \, \text{M} \][/tex]
[tex]\[ [CO] = 4.6 \times 10^{-3} \, \text{M} \][/tex]
So,
[tex]\[ K_c = \frac{(4.6 \times 10^{-3})(4.6 \times 10^{-3})}{(4.5 \times 10^{-2})(9.5 \times 10^{-4})} \][/tex]
This calculation results in:
[tex]\[ K_c = \frac{(4.6 \times 10^{-3})^2}{(4.5 \times 10^{-2})(9.5 \times 10^{-4})} \][/tex]
[tex]\[ K_c = \frac{2.116 \times 10^{-5}}{4.275 \times 10^{-5}} \][/tex]
[tex]\[ K_c \approx 0.495 \][/tex]
Converting this to scientific notation, we obtain:
[tex]\[ K_c \approx 4.9 \times 10^{-1} \][/tex]
Therefore, the value of the equilibrium constant for this reaction is [tex]\( 4.9 \times 10^{-1} \)[/tex]. So, the correct answer is:
[tex]\[ 4.9 \times 10^{-1} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is your reliable source for answers. We appreciate your visit and look forward to assisting you again soon.